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Abstract

Because of its role in many ecological processes, movement of animals in response

to landscape features is an important subject in ecology and conservation biology. In
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this paper, we develop models of animal movement in relation to objects or fields in a

landscape. We take a finite mixture modeling approach in which the component

densities are conceptually related to different choices for movement in response to a

landscape feature, and the mixing proportions are related to the probability of

selecting each response as a function of one or more covariates. We combine particle

swarm optimization and an Expectation-Maximization (EM) algorithm to obtain

maximum likelihood estimates of the model parameters. We use this approach to

analyze data for movement of three bobcats in relation to urban areas in southern

California, USA. A behavioral interpretation of the models revealed similarities and

differences in bobcat movement response to urbanization. All three bobcats avoided

urbanization by moving either parallel to urban boundaries or toward less urban

areas as the proportion of urban land cover in the surrounding area increased.

However, one bobcat, a male with a dispersal-like large-scale movement pattern,

avoided urbanization at lower densities and responded strictly by moving parallel to

the urban edge. The other two bobcats, which were both residents and occupied

similar geographic areas, avoided urban areas using a combination of movements

parallel to the urban edge and movement toward areas of less urbanization. However,

the resident female appeared to exhibit greater repulsion at lower levels of

urbanization than the resident male, consistent with empirical observations of

bobcats in southern California. Using the parameterized finite mixture models, we

mapped behavioral states to geographic space, creating a representation of a

behavioral landscape. This approach can provide guidance for conservation planning

based on analysis of animal movement data using statistical models, thereby linking

connectivity evaluations to empirical data.
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1 Introduction

Movement of individual animals in response to landscape features plays a role population

dynamics, population genetics, disease transmission, and many other ecological processes;

therefore, understanding the movement of individual animals in landscapes is of great

importance in many areas of ecology and conservation biology (Van Vuren, 1998; Tracey,

2006; Morales et al., 2010). Landscape features may consist of discrete objects or

continuous fields. Conceptually, object orientation refers to movement in relation to objects

in a landscape such as prey items or resource patches (Jander, 1975; Lima and Zollner,

1996). Further, taxis refers to movement in response to continuous fields such as

temperature, moisture, or elevation (i.e., gradients; Benhamou and Bovet, 1992).

Qualitatively, an animal may show attractive, repulsive, or neutral movement responses to

these landscape features (Jander, 1975; Lima and Zollner, 1996). Movement data for

individual animals are often collected using field techniques such as radio-telemetry or

Global Positioning System (GPS) telemetry. Data on landscape features are often collected

via remote sensing, ground measurement using GPS, or other techniques. Due to these

technological advances, data required for analyzing movement behavior in response to

landscape features are becoming increasingly available.

Over the past decade, great advances have been made in modeling animal

movement behavior. This includes the development of a general state-space modeling

(SSM) framework for animal movement in which true animal locations are modeled by a

process model while the probability of the data conditional on the true state is described

by an observation model (Patterson et al., 2008; Schick et al., 2008). The state-space
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modeling approach has been applied in several movement modeling efforts. Tracey et al.

(2005) developed a set of statistical models for the analysis of individual animal movement

data in relation to a single type of landscape feature. In these models, the concentration

parameter of a von Mises distribution for response angle changes based on the animal’s

location relative to the location of an object. This approach allows for nonlinear models,

but the forms of nonlinearity are restricted to exponential and logistic functions and the

movement response is based on a single probability density. Recently, animal movement

models that combine movement, resource selection, and home range of an animal have been

developed (e. g., Christ et al., 2008; Dalziel et al., 2008; Johnson et al., 2008; Forester

et al., 2009). Most of these models incorporate covariates in a probability density function

of bivariate locations rather than turn angles and move length and it is not always

straightforward to assess the effect of landscape features. Furthermore, these models are

formulated using techniques such as kernel smoothing and the statistical inference is often

computationally expensive. More recently, Hooten et al. (2010) developed agent-based

models for movement in which latent variables for residency and movement were modeled

on a lattice as a function of environmental covariates with the same spatial support. This

approach is likely to have many useful applications but it requires space to be discretized

and inference about the nature of movement appears to be indirect, mediated through the

latent variables. Tracey et al. (2011) developed a semiparametric regression approach using

neural networks to relate the movement model parameters of probability distributions to

covariates associated with landscape features without having to discretize space. While

fully-connected feedforward neural networks have proven useful in modeling animal

movement (Dalziel et al., 2008; Tracey et al., 2011), neural network parameters are not
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directly interpretable in terms of animal behavior, so inference can be made only about the

relationship between movement and landscape features in terms of the responses produced

by the network.

Other network-based approaches to modeling movement behavior are possible. For

example, Jacobs et al. (1991) and Jordan and Jacobs (1994) developed mixture of experts

(ME) and hierarchical mixture of experts (HME) models in the field of artificial

intelligence. In this framework, the model consists of a set of expert networks, where each

expert network models a response to a vector of inputs. However, some expert networks

perform better in some regions of the input space than others. Thus, a second gating

network controls the selection of expert networks based on the position in input space.

From a statistical perspective, these can be viewed as finite mixture models (FMMs). In

FMMs, a distribution is formed by a weighted sum of component probability densities

(McLachlan and Peel, 2000). The weights, referred to as mixing proportions, sum to 1.

The mixing proportions can depend on inputs (i.e. covariates; McLachlan and Peel, 2000).

We consider finite mixture models as a viable alternative approach for modeling

complex movement behavior in relation to a landscape feature consisting of either a

continuous field or discrete objects. From a biological perspective, the components are

considered to be different behavioral responses that produce the observed move angles,

move distances, or both over discrete time intervals. These responses are interpreted as

movement patterns with specific functions, as in the movement phases described by Nathan

et al. (2008) or behavioral modes described by Patterson et al. (2008). The mixing

proportions, which are the probabilities of selecting each response, describe the selection of

a response by an animal with a given local environment and other factors such as an
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animal’s internal state. These factors are described by covariates associated with each

observation and are used to model the mixing proportions. For example, if an animal is

closer to a particular object, then it may have a higher probability of choosing to avoid the

object. Thus, our approach contains many of the elements in the general conceptual

framework for modeling animal movement described by Nathan et al. (2008). As a result,

the FMMs we describe expand the capabilities of the models presented by Tracey et al.

(2005) because they allow movement responses to change in complex ways and they allow

for a range of movement responses to be utilized. Furthermore, unlike neural networks, a

behavioral interpretation of the finite mixture model parameters is possible.

Lima and Zollner (1996) discussed the need for relating animal behavior and

landscape features, and described information-based modeling approaches in which animal

behavior is dependent on the surrounding landscape. More recently, Bakian et al. (2012)

proposed the concept of a behavioral landscape in which animal behaviors are mapped by a

model to geographic space. They demonstrated their approach for foraging and

vocalization behavior of Willow Flycatchers (Empidonax traillii adastus). In their study,

foraging and vocalization behaviors could be directly observed and associated with the

animal’s location. However, for studies of movement via biotelemetry, movement behavioral

states of a study animal are typically not directly observed. However, using the FMMs, we

are able to both group observed movements into behavioral states and characterize

movement behavior within the states. Furthermore, these models directly relate movement

behavior and the local landscape as described by Lima and Zollner (1996).

Mammalian carnivores such as bobcats (Lynx rufus) are sensitive to habitat loss

and fragmentation due to urbanization (Crooks, 2002; Gehrt et al., 2010), a leading agent
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of habitat destruction and primary threat to biodiversity (Wilcove et al., 1998; Czech

et al., 2000; McDonald et al., 2008; McKinney, 2002). These impacts are particularly

evident in coastal southern California, a hotspot of biodiversity that has experienced rapid

urbanization, leading to declines in the distribution and abundance of numerous species

(Dobson et al., 1997), including bobcats (Crooks, 2002; Riley et al., 2003, 2006, 2010; Tigas

et al., 2002). Landscape ecologists have identified functional connectivity, the ability of

animals to move among resource patches, as an important characteristic of landscapes

(Taylor et al., 1993; Forman, 1997; Taylor et al., 2006). Changes in functional connectivity

have numerous demographic, genetic, and epidemiological implications for wildlife (Crooks

and Sanjayan, 2006). One goal of movement analysis is to understand how landscape

changes alter functional connectivity for a species. In this paper, we apply the FMM

approach to analyze movement of bobcats in an urbanized environment and then use the

movement models to visualize behavioral landscapes.

In Section 2, we describe bobcat data collected by GPS telemetry and the urban

land cover data. We present the general structure of finite mixture models for move angles

and the specific models we applied to the bobcat GPS telemetry data and urban land cover

data. We also describe an optimization procedure for obtaining parameters estimates and

standard errors, and inference using the models. Finally, we describe how to use the

models to relate locations in geographic space to bobcat movement behaviors. In Section 3,

we describe the results of the analysis of bobcat movement in relation to urban

development and give an example of a behavioral landscape generated from a model from

one of the bobcats. In Section 4, we provide an ecological interpretation of the results and

discuss future research directions. By mapping movement behavioral states on the
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landscape, we can better understand movement of animals in their environment, identify

areas that might enhance or inhibit functional connectivity, and identify areas that pose

higher risks to animals.

2 Methods

2.1 Movement and landscape data

We used data from a bobcat GPS telemetry study that was conducted to better understand

bobcat home range, habitat use, movement response to roads, and the effects of habitat

fragmentation due to urban development in Orange County, California, USA (Lyren et al.,

2006). Bobcat locations were collected at 15-minute or 30-minute time intervals using a

collar with a GPS receiver and data logger placed on each study animal. Locations were

only collected during night, between the hours of 22:00 and 01:00, several nights per week.

In order to better understand bobcat movement responses to urbanization, we

applied the FMM models to GPS telemetry data for three bobcats (a number we deemed

sufficient to assess our finite mixture modeling approach) identified as LYRU1, LYRU2, and

LYRU3. These animals were selected for this analysis from a larger set of 16 animals based

on (1) if a 15-minute relocation time interval was used for the animals, (2) the number of

observations per animal, and (3) how many locations were in proximity to urban areas.

During exploratory data analysis, we evaluated temporal autocorrelation in move angles by

conducting Rayleigh tests for the uniformity of the turn angle distributions for each

bobcat. For LYRU1 we rejected the null (χ2 = 18.383, p-value=0.0001), while for LYRU2
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(χ2 = 0.3855, p-value=0.825) and LYRU3 (χ2 = 1.4780, p-value=0.478) we failed to reject

the null. Although temporal autocorrelation in move angles appears to be present for

LYRU1, the models we present do not assume that move angles are identically

independently distributed (iid). Rather, the models assume that move angles are

independent after conditioning on the landscape (or other) covariates used in the model.

Often, programmed location acquisition by the GPS receivers fails due to terrain,

vegetation cover, or lack of satellite availability. However, the missing observations can

simply be ignored in the analysis. Additionally, if two consecutive locations were

co-located, then the move distance is 0.0 and the move angle is undefined. In these cases,

we omitted such observations from the analysis. Properties of the data for the three

selected bobcats are summarized in Table 1. Note that the movement paths of LYRU1 and

LYRU2 partially overlapped, while LYRU3 had a larger area of activity that did not

overlap with the others (Figure 1).

Spatial data for 30-meter resolution urban land use were developed using impervious

surface data from the National Land Cover Database (NLCD; Homer et al., 2004) and land

use from the Southern California Association of Governments (SCAG). Areas identified as

urban, residential, or industrial use by the SCAG or having greater than 15 percent

impervious surface in the NLCD data were classified as urban. This raster was developed

for a 5971.2 km2 area that covered the entire extent of Orange County and parts of Los

Angeles County, California. Within the area where bobcats were GPS tracked (shown in

Figure 1), raster cells classified as urban were compared to U.S. Geological Survey Digital

Orthoimagery Quarter Quadrangles (DOQQ) imagery (http://nationalmap.gov) and

corrected where large discrepancies were found. The final urban land cover data raster cells
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held an integer corresponding to a land cover category (0 = not urban, 1 = urban; Figure

1). Using this categorical raster, we computed the proportion of cells classified as urban

within moving windows centered on the raster cells with a radius 200 meters. We refer to

this quantity as Xurban and use it as a covariate in the functions for component mixing

proportions. At each bobcat location, we calculated the direction of increasing

urbanization using the raster of Xurban values. If this raster had no slope in the first-order

neighborhood around a bobcat location, we set this direction to 0.0 radians, which resulted

in a von Mises distribution being fit to the bobcat move angles when no urbanization is

present. The range of Xurban values at the observed bobcat locations is given in Table 1.

2.2 Finite mixture model for move angles

2.2.1 Movement data notation

Here we describe the notation for the data used in the model formulations. Let i = 1, . . . , I

index observations for a particular animal. For the ith observation, we let si = (si,1, si,2)
′

denote an observed location of an animal, where I + 1 locations at approximately regular

time intervals have been observed. These data are becoming common for many species with

increased use of GPS telemetry. Let Di = ‖si − si+1‖2 denote the move distance between

animal locations si and si+1 and let Yi = atan2(si+1,2 − si,2, si+1,1 − si,1) denote the move

angle between animal locations. Note that this angle is undefined if si = si+1; therefore, we

omit any zero-length move steps from the analysis. Thus, the ith move can be modeled as:

si+1 = si +Di × (cos(Yi), sin(Yi))
′ , (1)
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where i = 1, . . . , I.

For the ith observation, Ai is an observed angular covariate related to the object or

field to which we are modeling the animal movement response. In our analysis, Ai is the

direction of a gradient in the density of urbanization around the ith bobcat location;

however, this covariate could be the angle from the ith location to a vector-based feature

such as the nearest point on a road or the aspect of any continuous surface represented by

a raster. Further, let , j = 0, . . . , J index covariates and Xi = (X0,i, . . . , XJ,i) be a vector of

covariates related to the movement response where X0,i = 1 corresponds to the constant in

the regression model. In our analysis, the covariate X1,i is the density of urbanization

within 200 meters of each bobcat locations, which we will refer to as Xurban when

discussing the specific models applied in this paper. We define the response angle as

Ri = (Yi − Ai)mod(−π, π], which is the off-set angle between Yi and Ai.

2.2.2 General model formulation

Let g = 1, . . . , G index finite mixture model components. The components are interpreted

as movement behavior states of the animal, and we typically use the term component when

discussing the model itself and movement behavior state (or simply behavioral state) when

interpreting the meaning of a specific model. We model the ith move angle Yi given the

angular covariate Ai as a mixture of von Mises distributions:

f(Yi|Xi, Ai;β,η) =
G∑

g=1

pg(Xi,β)fg(Yi|Ai;ηg). (2)

12



Behavioral landscapes for movement Jeff A. Tracey et al.

In (2), we use the multiple logit model for the mixing proportions. The gth mixing

proportion is

pg(Xi,β) = exp(β′gX
′
i)

{
G∑

g=1

exp(β′gX
′
i)

}−1
, (3)

where Xi is a vector of covariates related to the ith observation and β = (β′1, . . . ,β
′
G)′ is a

vector of parameters. The first category (g = 1) is established as our reference category by

setting β1 = 0 to ensure identifiability and βg = (βg,0, . . . , βg,J)′ when g > 1. Note that∑
g pg(Xi;β) = 1. In essence, the choice to move in an angle described by a component

distribution is a multi-category logistic function of covariates Xi associated with the

animal at location si. Moreover, the gth component density

fg(Yi;Ai,ηg) = {2πI0(κg)}−1 exp {κg cos(Yi − µg − Ai)} , (4)

is a von Mises probability density function (pdf), where ηg = (µg, κg)
′, µg ∈ (−π, π] is the

mean response angle, and κg ≥ 0 is the concentration parameter. Furthermore, {2πI0(κg)}

is a normalizing constant and I0(κg) is a modified Bessell function of the first kind and zero

order.

More complicated distributions for response angles to landscape features may be

multimodal. To accommodate this situation, each mixture component g may in turn be a

mixture of sg > 0 subcomponents:

fg(Yi|Ai;ηg) =

sg∑
k=1

qk(φg)fg,k(Yi|Ai;µg,k, κg,k) (5)
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and

qk(φg) = exp(φk)


sg∑

k=1g

exp(φk)


−1

. (6)

Thus, the component pdf in (5) has parameters η = (η′1, . . . ,η
′
G)′, where ηg = (µ′g, κ

′
g,

φ′g)
′, µg = (µg,1, . . . , µg,sg)′, κg = (κg,1, . . . , κg,sg)′, and φg = (φg,1, . . . , φg,sg)′. All elements

of µg are on (−π, π], all elements of κg ≥ 0, and all elements of φg ∈ <. We let φg,1 = 0 to

ensure identifiability. The behavioral motivation for incorporating subcomponents is that

once an animal has selected a response based on the covariates, the distribution for the

response variable may still be multimodal and hence better modeled as a mixture of

subcomponent distributions. An example of this case is when an animal exhibits repulsion

to a landscape feature; it may avoid it by moving with response angle of ± π/2 radians in

an effort to circumvent it. This FMM approach is in the spirit of the hierarchical mixture

of experts (HME) approach taken by Jordan and Jacobs (1994), and reflects hierarchical

decision-making by an animal. The total number of parameters in a move angle model is

(J + 1)(G− 1) + 3
∑G

g=1 sg −G, where J is the number of covariates, G is the number of

components, and sg is the number of subcomponents in the gth component. Additional

models that include move distance response are described in online Appendix A.

2.2.3 Candidate models

Following from the general model formulation, we considered eleven alternative move angle

models in our analysis of the bobcat data. In the first two models (A and B; Table 2), no

covariates were used in the functions for the mixing proportions; that is, the mixing

proportions were constant. Model A had one component and model B had two
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components. These two models permitted move angle responses to the angular covariates

but did not incorporate responses to the landscape with respect to the mixing proportions.

Therefore, we used them for comparison to the remaining nine models (C – K, Figure 2

and Table 2) that do incorporate mixing proportions as a function of landscape covariates.

In these models, the mixing proportions were a function of a single covariate (Xurban), the

proportion of urbanization within 200 meters of a bobcat location, although the general

formulation can handle multiple covariates. The nine models can be illustrated as a

network of choices (i.e., gating networks in hierarchical mixture of experts) terminating

with a component (or subcomponent) of the finite mixture model (Figure 2). For example,

in model D, the animal may choose from two components for a movement response. One

component (left) is a mixture of two subcomponents, so the response distribution could be

bimodal. The other component (right) has only one subcomponent, so the response would

be unimodal. If the proportion of urbanization surface is flat within the 200-meter

neighborhood about an animal location, we set the angle covariate to 0.0 and fit a von

Mises distribution to the animal move angle.

2.3 Model fitting and inference

We adopted a maximum likelihood approach for statistical inference. However,

optimization to obtain the maximum likelihood estimates for FMMs can be very difficult

because numerous local optima often exist. The Expectation - Maximization (EM)

algorithm typically used with mixture models is prone to becoming trapped by local

optima (McLachlan and Peel, 2000). To overcome this difficulty, we employed particle
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swarm optimization (PSO), a stochastic optimization algorithm originally inspired by

flocking behavior of birds, to search for the general area of the global optimum (Poli et al.,

2007). Application of the PSO was followed by an EM algorithm to converge on the

maximum likelihood estimates (MLEs) for the model parameters. We provide details of

this approach in online Appendix B and examples of fitting models to simulated data are

given in online Appendix C. The optimization code was implemented in R (R Development

Core Team, 2010). For the PSO step of the procedure, we used the canonical PSO

implemented in the psoptim() function (Bendtsen, 2011). In the EM algorithm, we

consider each observation to be augmented with a label that identifies the model

component that generated the observation. The observed data plus the unobserved

component labels constitutes the complete data. Each iteration of the optimization

procedure consists of an expectation step (E-step) in which the component labels are set to

their expected values and a maximization step (M-step) in which the complete data

log-likelihood is optimized. We used the R function nlm() to optimize the complete data

log-likelihood in the M-Step. We obtained standard errors based on the asymptotic

variance calculated from the inverse of the numerically computed Hessian matrix returned

by the R numDeriv package using the hessian() function call on the observed negative

log-likelihood function (Gilbert, 2011). Bootstrap procedures are also available for

estimating the standard errors for the model parameters (see, e.g., McLachlan and Peel,

2000), but they tend to be more computationally intensive.

We used an information-theoretic approach to model selection (Burnham and

Anderson, 2002). For each model from A to J, we computed the incomplete data negative

log-likelihood value, the small sample variant of Akaike’s information criterion AICc,
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∆AICc values, the rank of each model based on ∆AICc, and the Akaike weight W for each

model. Akaike’s information criterion (AIC) is interpreted as the relative expected

Kullback-Leibler distance between a model and the true process that generated the data;

thus, the model with the lowest AICc is estimated to be the model that best approximates

this unknown process. The ∆AICc value for a model is calculated as its AICc minus the

AICc of the best model. Thus, for the best model ∆AICc = 0. The models are then ranked

relative to each other based on ∆AICc in ascending order. The model probability, or

Akaike weight, for a model is computed as W =

exp{−(1/2)∆AICc}/
∑

exp{−(1/2)∆AICc}. We can consider the weight of evidence for all

models or perform multimodel inference, but here we focus our presentation and

interpretation of the results on the model with the lowest AICc.

2.4 Mapping behaviors to the landscape

Producing the behavioral landscapes for each bobcat from the finite mixture models

consisted of two steps. First, based on the component (i.e., movement behavior state)

probability density functions for response angle in (4) we were able to quantitatively and

qualitatively describe the movement response associated with each state. The attractive,

repulsive, and neutral qualitative movement responses can be interpreted via the fitted

movement models. In the models we have considered here, a neutral response occurs when

the distribution of the response angle is fairly uniform; that is, it has a low concentration

parameter. Attraction occurs when the mean angle of the response distribution is near 0.0

and increases with the concentration parameter. A repulsive response can take two forms.
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The animal may show repulsion by moving away from the landscape feature if the mean

response angle is near ±π. The strength of the repulsion will increase with the

concentration parameter of the response angle distribution. Alternatively, an animal may

show a repulsive response by moving perpendicular to the angle of a landscape feature. In

this case the mean response angle will be near ±π/2 and the repulsion will increase with

the concentration parameter. In our example, the landscape features are areas classified as

urban development, and our covariate related to this feature is Xurban. This response then

relates to movement toward areas of roughly the same amount of urbanization around the

bobcat; that is, parallel to the edge of the urban area. Therefore, we refer to this as a

parallel response. An animal can engage in a parallel response by turning approximately

π/2 radians to the left or right. We hypothesize that an animal will assume this response

in order to avoid a landscape feature when it interferes with movement toward another

goal. These different qualitative responses may occur over different ranges of the

covariate(s) used to model the mixing proportions.

In the second step, we apply the parameterized multiple logit model for mixing

proportions given by (3) to the raster for the urban covariate Xurban which yields the

probability of each behavioral state at each raster cell. These probability surfaces for each

behavioral state were combined into a single map by assigning the component number (g)

for the most probable state to each cell in a categorical raster. Taken together, we were

able to identify the most probable behavioral response to urban development at each point

in space and describe the nature of that response.

From these maps, we can make predictions about the permeability of different areas

of a landscape or evaluate the functional connectivity of movement corridors. For example,
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some corridors may be dominated by an urban avoidance response (Figure 3A). This may

occur if a corridor is too narrow. Others might be strongly influenced by a tendency to

move parallel to the urban edge, which may actually enhance connectivity by directing

movement through the corridor (Figure 3B). If a corridor is wide enough, movement in the

interior may be similar to movements where there is no influence of urbanization (Figure

3C). In this case, movement may actually be slower through these areas because of a lack

of strong directionality to the movement and potentially higher residency due to the

availability of resources. Thus, in this approach, connectivity is dictated by landscape

structure and movement behavior, which is perfectly consistent with definitions of

functional connectivity (Taylor et al., 1993, 2006).

3 Results

3.1 Parameter estimation and model selection

The resident male bobcat LYRU1 showed little response when the proportion of

urbanization (Xurban) was low, but then transitioned through movement parallel to the

urban edge to strong movement away from urbanization as Xurban increased. The best

approximating model for LYRU1 was model H (Table 3). Parameters and standard errors

for this model are given in Table 4. All other models had ∆AICc ≥ 2.0 and four models

had ∆AICc ≥ 10.0 (Table 3). Model H had three components (Figure 2). The first and

second components had two subcomponents each, and the third component had one

subcomponent. The mixing proportion for the first component was near 0.0 when Xurban =
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0.0, increased to a peak of about 0.7 when Xurban reached approximately 0.18, and then

declined back to near 0.0 as Xurban increased to its maximum observed value of 0.45

(Figure 4). The first component had one subcomponent that produced strong movement

parallel to the urban edge (to the left) and a second subcomponent that produced

movement toward areas with more urbanization. The mixing proportion for the second

component started at near 0.0 when Xurban = 0.0 and increased to near 1.0 as Xurban

increased to 0.45, and had an inflection point at approximately 0.225 (Figure 4). The

second component had one subcomponent that produced strong movement away from

urban areas, and a second subcomponent that was roughly uniform. The mixing

proportion for the third component started at near 1.0 when Xurban = 0.0, declined to near

0.0 when Xurban reached 0.2, and had an inflection point at approximately Xurban = 0.125

(Figure 4). The third component produced a response angle distribution that was roughly

uniform. In summary, the model predicts movement roughly at random relative to the

direction of increasing urbanization, transitioning to movement either toward areas of

increasing urbanization or parallel to the urban edge, and then finally movement away

from urbanized areas as the degree of urbanization increases (Figure 4).

The resident female bobcat LYRU2 had a similar response to LYRU1 at high levels

of Xurban, but showed more of a tendency to move parallel to the urban edge at lower levels

of Xurban. The best approximating model for LYRU2 was model G (Table 3). Parameters

and standard errors for this model are given in Table 4. Seven of the models (A, B, D, E,

H, J, and K) had ∆AICc ≥ 2.0 and model B had ∆AICc ≥ 10.0. Model G had three

components. The first component had two subcomponents, and the second and third

components had one subcomponent each (Figure 2 and Table 3). The mixing proportion

20



Behavioral landscapes for movement Jeff A. Tracey et al.

for the first component was codominant with component 3 when Xurban = 0.0 and declined

gradually, in a nearly linear fashion, as Xurban increased (Figure 4). The first component

had one subcomponent that produced a strong parallel (to the right) response and a

second subcomponent that produced moderately strong movement away from areas of

higher urbanization. The mixing proportion for the second component was small when

Xurban = 0.0 and abruptly increased with increasing Xurban (Figure 4). The mixing

proportion function had an inflection point at approximately Xurban = 0.25 and

approached a value of 1.0 when Xurban reach the maximum observed value of 0.36 (Figure

4). The second component produced a strong movement response away from increasing

urbanization. The mixing proportion for the third component was codominant with

component 1 when Xurban = 0.0, reached its peak at about Xurban = 0.16, and then

declined as Xurban increased further. This third component produced a roughly uniform

response angle distribution. In summary, the model predicts movement parallel to or away

from the urban boundary and then transition to movement away from urbanized areas as

the proportion of urbanization within 200 meters increases (Figure 4).

The male bobcat LYRU3 had a large-scale movement pattern that was different

from the other bobcats and more consistent with dispersal behavior. Likewise, its response

to urbanization based on the best approximating model G (Table 3) was qualitatively

different. Parameters and standard errors for this model are given in Table 4. Nine of the

models (A, B, C, D, F, H, I, J, and K) had ∆AICc ≥ 2.0 and two models (A and I) had

∆AICc ≥ 10.0. Again, model G had three components as described above for LYRU2. The

mixing proportion for the first component started at nearly 0.0 when Xurban = 0.0,

increased to near 1.0 as Xurban increased to its maximum observed value of 0.14, and had
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an inflection point at approximately Xurban = 0.075 (Figure 4). This component had one

subcomponent that produced strong parallel (to the right) movement and a second

subcomponent that produced strong parallel (to the left) movement. The mixing

proportion for the second component was approximately 0.15 when Xurban = 0.0 and then

immediately declined to 0.0 as Xurban increased (Figure 4). The second component

produced a strong parallel (to the right) movement response to the urban boundary. The

mixing proportion for the third component was near 1.0 when Xurban = 0.0, decreased

abruptly to approximately 0.0 when Xurban reached 0.14, and had an inflection point at

about Xurban = 0.08 (Figure 4). This component had a response angle distribution that

was approximately uniform. In summary, the model predicts roughly random movement in

relation to urbanization and then transition to movement parallel to the urban edge in

either the left or right direction as the degree of urbanization increases (Figure 4).

3.2 Application

Overall, all three bobcats showed avoidance responses to the direction of increasing

proportion of urbanization within 200 meters of the observed locations. Bobcats LYRU1

and LYRU2 tended to move away with increasing urbanization (Xurban) whereas LYRU3,

which ranged more widely, had fewer locations in areas of high urbanization and tended to

move parallel to the urban areas. For all three bobcats, the response angle densities were

most concentrated at high values of Xurban. At low values of Xurban, LYRU1 and LYRU3

had response angle distributions were nearly uniform, while LYRU2 had a concentrated

response angle distribution that produced parallel (to the right) to the urban edge.
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The locations where these movement behaviors occurred were visualized with maps

of the behavioral landscape by applying the mixing proportion functions from model H for

LYRU1 to a raster of Xurban (Figure 5). This process produced three rasters, one for the

probability of each behavioral state occurring across the landscape (see online Appendix

D). From these rasters we produced a single categorical raster for the most probable

behavioral response at each point in space (Figure 6). Some areas could not be assigned a

probability because either the gradient of the proportion of urbanized surface was zero

(hence, flat) and so the direction of increasing urbanization was undefined, or the

proportion of urbanization exceeded levels at the observed locations for LYRU1 (i.e. 0.45).

However, if the proportion of urbanization exceeded 0.45, it is reasonable to assume that

LYRU1 would also show strong avoidance for these areas. Similarly, if the proportion of

urbanization is 0.0, it is reasonable to assume that LYRU1 would also show a weak (or

null) response to urban because it did so at low proportions of urbanization. Where

0 < Xurban ≤ 0.45, we can assign a behavioral state from the FMM for LYRU1. In this

case, the first component of the FMM corresponded to a moderately strong tendency to

move perpendicular to the direction of increasing urbanization (yellow areas in Figure 6),

the second component corresponded to a strong tendency to avoid urbanization (red areas

in Figure 6), and the third component corresponded essentially to a lack of response to

urbanization (green areas in Figure 6). Areas where component 2 dominates are unlikely to

be permeable because the bobcat tended to avoid them. In areas where component 1

dominates, connectivity may actually be enhanced because of the strong directionality

parallel to the urban edge associated with that behavioral state. For LYRU1, all three

cases for landscape connectivity illustrated in Figure 3 are present in the behavioral
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landscape map shown in Figure 6. However, for LYRU2 strong avoidance of urban was the

primary response, while for LYRU3 movement parallel to the urban edge is the primary

response as Xurban increases. Thus, behavioral landscapes for these individuals differed,

even though all three individuals showed avoidance of urban at the high values of Xurban at

observed locations and a weak response at low values of Xurban. Behavioral maps for

LYRU2 and LYRU3 along with probability surfaces and additional examples for all bobcats

are given as an online Appendix D.

4 Discussion

In this paper, we developed a finite mixture model approach for move angle response to

landscape features. The models can accommodate multiple covariates that influence the

selection of a component of the mixture, analogous to a movement behavior state. We fit

eleven specific models to data sets from three bobcats that were tracked by GPS telemetry

in Orange County, California for response to urbanization and assessed the relative

empirical support for the models using an information-theoretic approach. Using the best

approximating model for each animal, we interpreted the behavioral response of each

bobcat to urbanization in qualitative terms and produced behavioral landscape maps for

each bobcat.

The top-ranked models for LYRU1, LYRU2, and LYRU3 (models H, G, and G,

respectively) were similar in structure, differing in having one (G) or two (H)

subcomponents in the second component. The fitted response angle densities versus Xurban

showed a good correspondence between the observed data and the top-ranked models (see
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online Appendix D). The second-ranked models had density surfaces similar to the

top-ranked models. The difference usually involved the commission or omission of one

additional type of movement response. The models without response to urbanization with

respect to the mixing proportions (models A and B) were among the lowest-ranked models.

All three individuals showed avoidance of urban at the high values of Xurban at observed

bobcat locations and a weak response at low values of Xurban. However, for each bobcat

these models had specific differences in the responses they produced at different degrees of

urbanization.

All three bobcats avoided urban areas by either moving toward areas with lower

urban density, moving parallel to the urban edge, or both; however, there were some

interesting differences in movement responses between bobcats. LYRU1 and LYRU2

occupied the same general area and showed movement behavior consistent with home

range residency. Both of these bobcats avoided urban areas, according to the models with

the lowest AICC , by moving away from the direction of increasing urbanization. They both

transitioned to this behavior as the proportion of urbanization around their locations

increased from 0.2 to 0.3. In contrast, LYRU3 had an area of use an order of magnitude

larger than the other bobcats, and its movement behavior appeared to be more

dispersal-like. Its avoidance of urban areas consisted exclusively of moving parallel to the

urban edge. This avoidance response started abruptly, according to model G, when the

proportion of urbanization reached 0.08. Also, the proportion of urbanization at LYRU3

locations did not exceed 0.14, less than half of the maximum observed values of the other

bobcats. Our results suggest a difference in movement response to urbanization for resident

bobcats versus those engaged in more wide-ranging behavior.
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There is reason to expect differences in male versus female encounter rates with

urban edges and movement responses to urbanization. Male bobcats tend to have larger

home ranges, move longer distances during the process of dispersal, and exhibit greater

competition for space, which makes encounters with roads and urban areas more likely

(Sandell, 1989; Sunquist and Sunquist, 1989; Janecka et al., 2006; Tucker et al., 2008; Riley

et al., 2010). Studies of bobcat behavior in California suggest that there is either no

difference in male versus female bobcat use of urbanized areas or that females cross roads

and use urbanized areas less than males (Riley et al., 2010). The models for resident male

(LYRU1) and female (LYRU2), in addition to the similarities in urban response described

above, also have some differences suggesting that the female bobcat showed greater

avoidance of urbanization. At intermediate levels of urbanization, male LYRU1 had a

response that consisted of a mixture of moving parallel to the urban edge and moving

toward urbanization. In contrast, female LYRU2 showed avoidance of urbanization by

moving parallel to the urban edge at low levels of urbanization. Indeed, LYRU1 spent more

time in closer proximity to urban areas. It is possible that these results reflect a general

pattern in which female bobcat show greater avoidance of urban areas, and should be

addressed in future investigations.

In our study, we tracked bobcats at night (22:00 to 01:00). Some studies suggest

that bobcats venture further into urban areas at night (Riley et al., 2010), so the responses

in our observed data may represent the weakest responses to urbanization. Movement

responses to urbanization may depend on visibility, urban light and noise, and human

activity levels. Future studies can examine responses of bobcats to urbanization during

different times of day, using time of day as a covariate in the models. Also, data for the
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internal state of the bobcats were not available, although an animal’s internal state is

considered important to movement behavior (Bell, 1990; Nathan et al., 2008). Animals

with low energy reserves or that are attempting to escape from an unfavorable social

environment may be more risk-prone (Krebs and Davies, 1993). Thus, response to

urbanization may differ depending on the internal state of the individual. Further, bobcats

may be responding to landscape features or familiar places in their home ranges that are

related to the degree of urbanization, rather than responding directly to the degree of

urbanization itself. However, in this example all three bobcats consistently showed

increasing avoidance behavior as the degree of urbanization increased, raising our

confidence in our interpretation of the results.

The finite mixture modeling approach has several useful features. First, it is

computationally practical compared to many other movement modeling methods currently

available. Second, hierarchically structured decision-making allows the complexity of a

model to be varied by replacing components (i.e., experts) with a more detailed HME

sub-model or collapsing a sub-model in the existing HME into a simplified component.

Third, FMMs can be used to perform an unsupervised classification of movement

behaviors, which we exploited to create behavioral landscapes. This approach can be useful

for inferring distinct patterns of movement, which have been referred to as behavioral

modes or movement phases (Patterson et al., 2008; Nathan et al., 2008), when direct

observation of such states is not possible.

In the behavioral landscapes created for Willow Flycatchers by Bakian et al. (2012),

they were able to directly observe animals in different behaviors; in our case, however, we

had to use the FMM approach to classify movement behaviors based on movement data. In
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addition, their application focused on foraging and vocalization behavior, which is related

to survival and reproduction. We created behavioral landscapes for bobcat movement

behavior (Figure 6, Appendix D), which are related to critical processes such as landscape

connectivity, immigration and emigration among populations, and gene flow. These maps

are complimentary to those of Bakian et al. (2012). The behavioral landscape maps we

created took urban development into account. However, we can include other landscape

features by passing additional covariates to the mixing proportion functions. For example,

including the proportion of riparian habitat around a bobcat location may alter its

response to urban development. We use these behavioral landscapes to assess connectivity

between habitat patches. Such connectivity assessments can be used to prioritize

conservation activities, identify areas for further study and provide a priori predictions for

those studies, and predict connectivity under future land use scenarios. These areas might

then be targeted for further study or management efforts to conserve functional

connectivity. In addition, landscape connectivity identified by the behavioral landscapes

can be explored in greater depth by using the FMMs to simulate movement across the

landscape in an agent-based model.

Objectives for animal movement modeling include improving our understanding of

movement behavior itself, better understanding the role of movement behavior at higher

levels of biological organizations (such as populations, communities, and disease dynamics),

and guiding conservation and management. To achieve these ends, we must continually

improve both our conceptual and quantitative models of animal movement. With the finite

mixture movement models specifically, future versions can incorporate time dependency,

modeling response angles to multiple landscape features, influence of large-scale movement
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patterns, and dependency on internal state. Our results suggest possible movement

patterns in response to urbanization based on individual differences in large-scale

movement patterns and gender. As the finite mixture models and other movement models

are applied to more data, the range of movement responses and how they relate to sex, life

history stage, internal state, external (including social) environment, and other factors will

become clearer. Agent-based models (ABMs) are useful for understanding how properties

of and interactions among individuals result in behavior at higher levels, such as

populations (Grimm et al., 2005). ABMs may be useful in developing an understanding of

the consequences of behavioral and physiological constraints at the individual level, how

they relate to movement decisions, and consequences at the population level (Revilla and

Wiegand, 2008; Melbourne and Hastings, 2009; Morales et al., 2010).

While population models depend on rates of movement across space, conservation

applications such as reserve design are also concerned with where movement occurs

between habitat patches. In this paper, we visualized the predictions of movement models

in geographic space based on the concept of a behavioral landscape. The use of move step

or move path data is underrepresented in analysis of landscape connectivity that employ

least-cost path algorithms (Zeller et al., 2012). More work needs to be done to integrate

data-driven movement models into other tools for evaluating connectivity, including

least-cost path analysis (Theobald, 2006), agent-based models (Tracey, 2006), and

circuit-theoretic models (McRae et al., 2008). We believe the finite mixture movement

modeling approach will aid ecological modelers, conservation biologists, and landscape

ecologists in understanding animal movement behavior on landscapes, and maps such as

the behavioral landscapes we developed will provide meaningful recommendations for
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conservation and management.
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Table 1: Bobcat data summary.

Bobcat Gender Tracking Interval Observations Area of Usea Urbanizationb

LYRU1 Male Jan - Jul 2003 184 3.97 km2 0.00 - 0.45

LYRU2 Female Jan - Jul 2003 142 2.16 km2 0.00 - 0.36

LYRU3 Male Jan - Mar 2003 195 24.19 km2 0.00 - 0.14

aArea in km2 based on 95 percent contour of fixed kernel density
bRange of proportion urbanization values at observed bobcat locations

Table 2: Summary of specific models used in the examples. The network structure for models

C – K are shown in Figure 2.

Model (m) Componentsa sub1b sub2c sub3d sub4e Parametersf

A 1 1 0 0 0 2

B 1 2 0 0 0 5

C 2 1 1 0 0 6

D 2 2 1 0 0 9

E 2 2 2 0 0 12

F 3 1 1 1 0 10

G 3 2 1 1 0 13

H 3 2 2 1 0 16

I 4 1 1 1 1 14

J 4 2 1 1 1 17

K 4 2 2 1 1 20

aThe number of components in the model
bThe number of subcomponents in the first component
cThe number of subcomponents in the second component
dThe number of subcomponents in the third component
eThe number of subcomponents in the fourth component
fThe number of parameters in the model
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Table 3: Results of fitting eleven alternative models to move angle data for three bobcats.

The fitted response angle density for the model with the lowest AICc for each bobcat is

shown in Figure 4.

Bobcat Model −`(β,η) a AICc
b ∆AICc

c Rankd W e

LYRU1 A 334.62 673.32 10.76 8 0.00

B 332.51 675.36 12.81 9 0.00

C 331.89 676.26 13.71 11 0.00

D 326.02 671.07 8.52 6 0.01

E 324.77 675.36 12.81 10 0.00

F 324.99 671.26 8.71 7 0.01

G 319.09 666.32 3.77 3 0.09

H 313.65 662.55 0.00 1 0.62

I 319.25 668.98 6.43 5 0.02

J 313.62 664.92 2.37 2 0.19

K 311.10 667.36 4.81 4 0.06

anegative log-likelihood for each model
bsmall sample adjusted AIC
cDifference between the model AICc and the smallest AICc
dThe rank of the model according to AICc in ascending order
eThe model weight (see text)
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Bobcat Model −`(β,η) a AICc
b ∆AICc

c Rankd W e

LYRU2 A 258.12 520.33 7.94 10 0.01

B 256.14 522.72 10.33 11 0.00

C 250.83 514.28 1.90 4 0.13

D 248.08 515.53 3.14 6 0.07

E 246.82 520.06 7.68 9 0.01

F 245.91 513.50 1.11 2 0.19

G 241.77 512.38 0.00 1 0.34

H 239.52 515.39 3.00 5 0.08

I 241.48 514.26 1.87 3 0.13

J 239.47 517.89 5.50 8 0.02

K 235.28 517.50 5.12 7 0.03

anegative log-likelihood for each model
bsmall sample adjusted AIC
cDifference between the model AICc and the smallest AICc
dThe rank of the model according to AICc in ascending order
eThe model weight (see text)
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Bobcat Model −`(β,η) a AICc
b ∆AICc

c Rankd W e

LYRU3 A 358.38 720.83 20.34 11 0.00

B 348.60 707.51 7.02 8 0.02

C 348.38 709.21 8.71 9 0.01

D 343.88 706.73 6.24 6 0.02

E 338.37 702.45 1.96 2 0.20

F 343.02 707.23 6.73 7 0.02

G 336.24 700.49 0.00 1 0.52

H 335.61 706.28 5.78 5 0.03

I 341.08 712.50 12.00 10 0.00

J 333.59 704.65 4.15 4 0.07

K 329.28 703.38 2.89 3 0.12

anegative log-likelihood for each model
bsmall sample adjusted AIC
cDifference between the model AICc and the smallest AICc
dThe rank of the model according to AICc in ascending order
eThe model weight (see text)
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Table 4: Parameter estimates via maximum likelihood and standard errors (SE) for the top

ranked model H for bobcat LYRU1, model G for bobcat LYRU2, and model G for bobcat

LYRU3.

LYRU1 LYRU2 LYRU3

Component Parameter Estimate SE Estimate SE Estimate SE

1 µ1,1 1.98 0.07 -1.41 0.03 1.26 0.35

1 µ1,2 -0.37 0.13 -2.40 0.12 -1.55 0.05

1 ln(κ1,1) 3.20 0.56 5.07 0.56 -1.09 0.40

1 ln(κ1,2) 2.75 0.68 1.60 0.50 4.32 0.72

1 φ1,2 -0.35 0.50 1.28 0.53 -2.34 0.40

2 β2,0 -8.61 4.59 -6.94 4.58 -4.17 1.58

2 β2,1 38.80 19.92 37.31 20.12 48.65 21.33

2 µ2,1 2.69 0.03 2.45 0.07 -1.22 0.15

2 µ2,2 -1.11 0.61 - - - -

2 ln(κ2,1) 5.13 0.53 4.03 0.72 2.81 0.85

2 ln(κ2,2) -0.80 0.67 - - - -

2 φ2,2 1.43 0.46 - - - -

3 β3,0 6.41 2.96 0.38 0.39 -9.79 4.73

3 β3,1 -48.96 22.18 8.67 5.55 94.76 44.43

3 µ3,1 2.11 0.40 1.18 0.40 1.63 0.04

3 ln(κ3,1) -1.11 0.42 -0.77 0.60 5.38 0.88
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Figure 1 Bobcat location data were collected by Global Positioning System (GPS)

telemetry and landscape data was compiled from remote sensing sources in Orange County,

California. The map shows urban land cover in gray. Observed move steps for bobcat

LYRU1 are shown in red, LYRU2 are shown in green, and LYRU3 are shown in blue.

Figure 2 An illustration of the gating network structure for finite mixture models

C – K. Each row, from top to bottom, corresponds to models with an increasing number of

components. Each column, from left to right, corresponds to models with an increasing

number of model components with two subcomponents. Given sufficient data, any number

of components and subcomponents may be specified. Nodes at the root of the trees shown

as squares represent multiple logit functions, nodes shown as diamonds represent logistic

functions for subcomponent selection, and leaf (terminal) nodes shown as circles represent

von Mises distributions. Additional details for the models are given in Table 2.

Figure 3 A conceptual illustration of the application of a behavioral landscape to

evaluating functional connectivity through an urbanized area. Dark gray areas are those

where an animal shows strong avoidance of the landscape. Gray shows areas where the

animal most likely moves parallel to the landscape features it avoids. White areas are those

where the animal responds in a neutral or attractive manner. The white-filled points with

arrows show animal response to different parts of the landscape. In A, movement through

the corridor is unlikely because of the avoidance response that dominates the central part

of the area. In B, movement through the area is likely; in this case, the animal may

actually move rapidly through the area because of its parallel response to the urban edge.

In C, the corridor is intact; however, movement may be less directional because the weak

movement response to urbanization in the interior area is less likely to direct movement
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through it. In this case, movement through the area may be slower than in B.

Figure 4 Plots for mixing proportions (left column) and response angle probability

density functions (right column) for each bobcat. The mixing proportions are a function of

Xurban, the proportion of urban land cover within a 200 meter radius of the bobcat

locations. The response angle densities describe movement angles in relation to the angle of

an increasing proportion of urbanization. Thus, a response angle of 0 radians corresponds

to movement toward more urbanized areas, ±π radians corresponds to movement away

from urban areas, and ±π/2 corresponds to movement roughly parallel to the urban edge.

Plots for bobcat LYRU1 are shown in the top row, LYRU2 are shown in the middle row,

and LYRU3 are shown in the bottom row. Functions for component 1 are shown as a solid

line, component 2 as a dashed line, and component 3 as a fine dashed line.

Figure 5 The process of mapping movement behaviors in geographic space using

the finite mixture models. Model H, fitted to data from bobcat LYRU1, is used as an

example. The raster of the proportion of urbanization within 200 meters (Xurban) is used

as input to the model (top). Each raster cell is assigned a probability that a movement

behavior response will occur there by the mixing proportion functions of the FMM

(middle). The quantiles of the mixing proportions as a function of Xurban, based on 20000

Monte Carlo samples, are shown as shaded bands, from outer to inner, for the intervals of

0.05 – 0.95, 0.10 – 0.90, and 0.25 – 0.75. The black line shows the median value for the

mixing proportion. Finally, the move angle responses for each movement behavior state

characterize the effect of urbanization on bobcat behavior (bottom). In this case

component (behavioral state) 1 corresponds to movement parallel to the urban boundary

or slightly toward it, component 2 corresponds to strong avoidance of urban areas, and
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component 3 corresponds to a very weak response to urbanization.

Figure 6 An example of a behavioral landscape for movement of LYRU1 (refer to

the urban areas in Figure 1). Red areas indicate where response component 2, which

corresponds to strong avoidance of urban areas, is most probable. Yellow area indicate

where response component 1, movement perpendicular to the direction of the increasing

urbanization (i.e., roughly parallel to the urban edge), is most probable. Green areas

indicate where response component 3, which corresponds to a very weak response urban

areas, is most probable. Areas that are not colored are either dominated by non-urban or

have a proportion of urbanization that exceed that used by bobcat LYRU1. The letters A,

B, C, and D indicate areas with different permeabilities based on the behavioral landscape

map. A, B, and C correspond to the cases in the conceptual illustration in Figure 3. Over

much of the area in D, the proportion of urbanization exceeds that observed to be used by

the bobcat and is therefore assumed to be of even lower permeability. Remote sensing

imagery and roads in black lines are shown for geographic context.
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