Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

Marion Vittecoq a,b,⁎, Eric Elguero a, Kevin D. Lafferty c, Benjamin Roche d, Jacques Brodeur e, Michel Gauthier-Clerc b, Dorothée Missé a, Frédéric Thomas a

aIRD, MIVEGEC (UMR CNRS/IRD/UM1), 911 Ave. Agropolis, BP 64501, FR-34394 Montpellier Cedex 5, France
bCentre de Recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France
cWestern Ecological Research Center, US Geological Survey, c/o Marine Science Institute, UC Santa Barbara, CA 93106, USA
dUMMISCO (UMI IRD/UPMC), 32 Ave. Henri Varagnat, 93143 Bondy Cedex, France
eIRBB, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal (Québec), Canada H3X 2B2

⁎ Corresponding author at: Centre de Recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France. Tel.: +33 (0)490972013; fax: +33 (0)490972019.
E-mail address: vittecoq@tourduvalat.org (M. Vittecoq).

Available online 25 January 2012

Accepted 13 January 2012
Received in revised form 12 January 2012
Received 6 January 2012

Article history:

Keywords:
Encephalon tumors
Medical geography
Malignancy
Nervous system
Latent toxoplasmosis

1. Introduction

More than 237 000 central nervous system cancers are diagnosed each year worldwide and survival remains low even in the most developed countries (GLOBOCAN, 2008). Despite considerable research, the causes of these malignancies are largely unknown. Some studies have highlighted associations between brain tumors and environmental factors including ionizing radiation, diverse chemical products and electromagnetic fields (Fisher et al., 2007). In animals, infections by different viruses have experimentally led to brain tumors (Wrensch et al., 2002). Persistent infections may promote cancer by increasing mutation rates through the inflammation they induce. Moreover, intracellular pathogens may disrupt cell barriers to cancer. However, there are very few studies investigating the link between pathogens and brain cancer in humans. Recently, using a dataset including 37 countries, Thomas et al. (2012) detected a positive relationship between the national seroprevalence of the protozoan parasite Toxoplasma gondii and the national incidence of brain cancer.

T. gondii is an apicomplexan parasite that is transmitted to its final host, a feline, through the consumption of an intermediate host, which can be any warm-blooded vertebrate, including humans (Dubey, 1998). This parasite is very common and infects more than one-third of the world human population. Humans are infected by eating tissue cysts in contaminated meat or by contact with soil contaminated with oocysts from cat feces. Within Europe and North America, most strains isolated from humans and domestic/farm animals belong to three clonal types: genotypes I, II and III (Boothroyd, 2009). Type I strains are lethal and do not readily give rise to chronic infections in mice. An increased frequency of type I strains in severe congenital toxoplasmosis in humans suggests that this lineage may also be more pathogenic for humans than lineage II and III (e.g. Howe and Sibley, 1995). By contrast, type II and III strains are considerably less virulent and characterized by long-term infections (Su et al., 2002). In Europe, human infections are most commonly associated with Type II strains (Sibley et al., 2009). Latent T. gondii infections are traditionally considered benign by conventional medicine, but evidence is accumulating that the bradyzoite stages encysted in the brain during the latent phase are responsible for diverse neurological pathologies (see Flegr, 2010 for a recent review). T. gondii is sufficiently common in humans that it could lead to a large proportion of brain cancer cases (Thomas et al., 2012).
2. Materials and methods

In France, mortality causes, including brain cancer, are available for each of the 22 administrative regions since 1979 (until 2007), and regional data on T. gondii seroprevalence is available for women of childbearing age for 1995 and 2003 (Berger et al., 2007). We asked whether the prevalence of T. gondii in a region was positively associated with the mortality due to brain cancer in that region.

National statistics on brain cancer mortalities in men and women for each of the 29 years (1979–2007) were obtained from an Inserm database available at http://www.cepidc.vesinet.inserm.fr/. These data do not include the incidence of brain cancer. They concern mortality from malignant primary encephalon tumors, those classified 191 (until 1999) and C71 (from 2000) in the International Classification of Disease (ICD, 9th and 10th revision, available at: http://apps.who.int/classifications/apps/icd/icd10online/). Because sample sizes were too small among the C71/191 sub-categories (0–9, depending on localization in the brain), data were pooled prior to analyses. Mortality data due to malignant C70 and C72 tumors were anecdotal over the entire period and were not analyzed. The 22 regions of metropolitan France served as replicates. Mortality data from 3.15 to 5.44 deaths per 100 000 inhabitants. Brain cancer mortality rates increased over time (probably due to improvements in detection of brain cancer). Both T. gondii prevalences and brain cancer mortalities were highly variable across regions. As an example in 2003 prevalence varied from 29% to 56.3% and mortality varied from 3.15 to 5.44 deaths per 100 000 inhabitants (mean mortality rate for the whole population of a region). Brain cancer mortality was consistently higher for males than for females.

Once mortality data were corrected for year effects, a moderate but significant effect of T. gondii was detected for men from 55 years and older (P-values: 55–64 years = 0.0282, 65–74 to 85–94 years < 0.0001), for women from 65 years (P-values: 65 years = 0.0023, 75–84 and 85–94 years < 0.0001). This effect increased with age and was stronger for men than for women (Fig. 1). Both results are consistent with the fact that T. gondii exposure increases with age and has different neurological effects on men and women (Flegr, 2010). While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not indicate causation, it is consistent with a similar pattern at the global level for the incidence of brain cancer (Thomas et al., 2012). Although we cannot exclude the existence of confounding variables, these results, together with those by Thomas et al. (2012), suggest it would be worth investigating the prediction

Fig. 1. Relationship between Toxoplasma gondii seroprevalence and mortality rates due to brain cancers. Slopes (+/− 95% confidence intervals) of the relationship between Toxoplasma gondii prevalence in a region in France (range 34–62) and mortality rates due to brain cancers in adults (per 100,000 individuals), separated by gender and age class (after controlling for year). Slopes > 0 indicate a positive relationship between regional brain cancer mortality and T. gondii prevalence for males (squares) and females (triangles).
that individuals with brain cancer are more likely to have been infected with *T. gondii*. Finding a causal link between *T. gondii* and brain cancer would radically change the way we consider *T. gondii* infections, and provide a means to reduce the risk of brain cancer, particularly in countries like France where the incidence of brain cancer and *T. gondii* are both high.

Acknowledgments

This work was supported by the French Consortium Evolution et cancer (CNRS).

References

