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Abstract: Free-ranging sea otters are subject to hydrocarbon exposure from a variety of sources, both natural
and anthropogenic. Effects of direct exposure to unrefined crude oil, such as that associated with the Exxon
Valdez oil spill, are readily apparent. However, the impact of subtle but pathophysiologically relevant con-
centrations of crude oil on sea otters is difficult to assess. The present study was directed at developing a model
for assessing the impact of low concentrations of fuel oil on sea otters. Quantitative PCR was used to identify
differential gene expression in American mink that were exposed to low concentrations of bunker C fuel oil. A
total of 23 genes, representing 10 different physiological systems, were analyzed for perturbation. Six genes with
immunological relevance were differentially expressed in oil-fed mink. Interleukin-18 (IL-18), IL-10, inducible
nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and complement cytolysis inhibitor (CLI) were
down-regulated while IL-2 was up-regulated. Expression of two additional genes was affected; heat shock
protein 70 (HSP70) was up-regulated and thyroid hormone receptor (THR) was down-regulated. While the
significance of each perturbation is not immediately evident, we identified differential expression of genes that
would be consistent with the presence of immune system-modifying and endocrine-disrupting compounds in
fuel oil. Application of this approach to identify effects of petroleum contamination on sea otters should be
possible following expansion of this mink model to identify a greater number of affected genes in peripheral

blood leukocytes.
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INTRODUCTION 2002; USFWS, 2003). Because their ranges tend to be
limited and concentrated near the coast, sea otters are

The Southern sea otter (Enhydra lutris neresis) population  vulnerable to runoff or shipping-related contamination
has experienced recent dramatic declines (Bodkin et al., with petroleum oil products (VanBlaricom and Jameson,
1982). The acute effects of petroleum oil exposure include

Published online: August 24, 2007 disturbances in thermoregulation, respiration, and metab-
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liams et al., 1995). These pathologies can be detected
clinically, by hematological and serum chemical analyses,
or at necropsy. Since the immediate effects of direct
petroleum oil exposure are dramatic, the short-term im-
pacts on individual or populations of sea otters in the spill
area are relatively straightforward to record, monitor, or
study. A number of studies have documented the long-term
impacts of a catastrophic oil spill (Monson et al., 2000;
Bodkin et al., 2002). These impacts may be a result of
sublethal pathology in individuals exposed to oil at the time
of the spill or chronic physiological stresses from continued
exposure to oil remaining in the environment. Whatever
the mechanism behind these long-term effects, the patho-
physiological changes within an individual may be signifi-
cant but subtle, and consequently undetectable using
classical diagnostic methods. In fact, many of the studies
investigating low-grade, long-term impacts of oil spills use
statistical techniques to identify either changes in popula-
tion demographics, patterns of mortality, reproductive
efficiency, or survivability. While the conclusions from
these studies are compelling, the supporting data are
incomplete and complicated by confounding factors that
also impact population demographics and survival.

Marine mammal toxicology has relied heavily on the
identification of chemical contaminants within individual
tissues as an indicator of toxic insult. Unfortunately, these
assays are information-limited because the way xenobiotics
affect the health of an individual is not assessed. Therefore,
methods for measuring sensitive indicators of lingering,
low-grade pathophysiological changes in oil-exposed indi-
viduals are urgently needed. Contemporary gene expression
analysis used to identify an organism’s genomic stress re-
sponse to environmental contamination by individual
chemicals or complex mixtures has the potential to trans-
form marine toxicology research (Burczynski et al., 2000;
Bartosiewicz et al., 2001). The advantage of using gene
expression assays in marine mammal toxicology lies in the
capability to measure the physiologic responses (acute or
chronic) of an individual to toxic insults.

Microarray analysis and gene-specific quantitative real-
time polymerase chain reaction (QRT-PCR) yields impor-
tant information on the physiological mechanisms that
orchestrate an integrated response to a variety of stressors
(Marrack et al., 2000). The value of these novel technolo-
gies is that the up- or down-regulation of many genes,
which provide the transcriptional messages important in
mediating toxicological and immunological reactions, can

be assayed from a single sample. This is ideal for wildlife
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researchers where the amount of sample collected can be
limiting. Gene expression analysis can be used to detect
transcriptionally active genes that are up- or down-regu-
lated by particular toxicants and this may give insights into
changes in an animal’s response to toxic insult.

The long-term goal of this study is to develop sensitive
and specific markers that can be used to measure long-
lasting pathophysiological changes associated with either
acute or chronic low-grade exposure to petroleum oil.
Since petroleum oil has multiple components, the toxic
effects of exposure and ingestion are likely to be diverse and
widespread within the body. For this reason, the utility of a
single marker of sub-lethal oil-induced pathology would be
limited. The development of molecular technique(s)
capable of detecting toxin-specific patterns in gene
expression would permit examination of animals for subtle
alterations in multiple physiological processes. Such an
approach would facilitate monitoring long-term effects of
oil exposure in individual, free-ranging organisms.

Surrogate species are invaluable for defining immu-
nologic changes associated with exposure to environmen-
tally relevant chemical contaminants. Captive American
mink (Mustela vison) have been successfully used as a
model for sea otters to study the toxic effects of fuel oil
(Mazet et al., 2000, 2001; Schwartz et al., 2004ab). Petro-
leum oil-induced perturbations were observed in both
immune and endocrine systems. This article describes the
further development of mink as a sensitive model for
detecting petroleum oil-induced changes in gene expres-
sion. Captive ranch mink exposed to fuel oil were analyzed
for alterations in gene expression by using a human
microarray in combination with qRT-PCR. Such an ap-
proach would be useful for monitoring the long-term ef-
fects of an oil spill on the health of individual as well as
populations of animals.

METHODS

Animals and Oil Exposure Protocol

Ranch mink used in this study were part of a large fuel oil
exposure experiment examining the chronic toxicological
effects of bunker C fuel oil on the immune system. Full
details of the exposure have been published elsewhere
(Schwartz et al., 2004ab) and only information pertinent to
the present study is described below. Animals (8-month-old
males) were divided into two groups: one group (N =9) was
maintained on a ranch feed (150-200 g/day) containing
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500 ppm of Bunker C fuel oil for 113-118 days. The control
group (N = 5) was maintained on the same feed ration with
mineral oil added instead of fuel oil. The concentration of
fuel oil fed to the mink corresponded to the petroleum
hyrdrocarbon concentrations measured in invertebrates
sampled in the oiled Prince William Sound region 1 year
after the Exxon Valdez spill (Mazet, 2001).

At the end of the exposure, venous blood from every
animal was collected into cell-separation vacutainer tubes
(8 ml) (CPT w/sodium citrate; Becton Dickinson, Franklin
Lakes, NJ). Tubes were centrifuged at 1800g for 20 minutes.
Isolated mononuclear cells were suspended in sterile PBS
(phosphate buffered saline) containing 0.5 M EDTA (pH
7.4), centrifuged (250¢, 8 minutes), resuspended in cryo-
preservation media (10% Dulbecco’s modified Eagle’s
medium, 10% DMSO, and 80% fetal bovine serum), rate
frozen at -80°C, and then transferred to liquid nitrogen.

Animals were euthanized by CO, asphyxiation fol-
lowing blood collection. Cells from the spleen obtained
from each animal were flushed out with cell culture media,
the mononuclear cells collected by density gradient cen-
trifugation, and then cryopreserved in the same manner as
PBMLs (peripheral blood mononuclear leukocytes).

RNA Extraction and cDNA Synthesis

Total RNA was isolated from splenic mononuclear leuko-
cytes and PBMLs using silica-based gel membranes com-
bined with microspin technology (Qiagen, Valencia, CA)
and stored at -70°C. A standard ¢cDNA synthesis was per-
formed on 2 (g of RNA template from each animal.
Reaction conditions included 4 units reverse transcriptase
(Omniscript®; Qiagen, Valencia, CA), 1 (M random
hexamers, 0.5 mM each dNTP, and 10 units RNase
inhibitor, in RT buffer (Qiagen, Valencia, CA). Reactions
were incubated for 60 minutes at 37°C, followed by an
enzyme inactivation step of 5 minutes at 93°C, and stored
at -20°C until further analysis.

Development of Mink-specific Quantitative PCR
Primers

Microarray analysis was performed by Genome Explorations
Inc. (711 Jefferson Ave., Suite 415, Memphis, TN). Mink-
specific quantitative PCR systems were designed for: i) select
genes identified by microarray as being differentially ex-
pressed between oiled and control mink; ii) genes repre-
senting six broad categories of biologically relevant

physiological systems; and iii) an endogenous control gene,
ribosomal subunit S9. Degenerate primers were designed
based upon multi-species alignments (GenBank) (Table 1).
The six systems were selected based on petroleum oil’s—or
components of petroleum oil’'s—known effect on immune
defense (Schwartz et al., 2004ab), cellular injury (Ghanem
et al., 2006), signal transduction (Burchiel et al., 2004),
xenobiotic and metal metabolism (Schwartz et al., 2004ab),
tumorigenesis (Ramesh et al., 2004), and reproduction
(Mazet et al., 2001). Briefly, degenerate primer pairs were
utilized on cDNA generated from three mink spleen sam-
ples. PCR amplifications using these primers were per-
formed on 20 ng of each ¢cDNA sample in 50 pl volumes
containing 20-60 pmol of each primer, 40 mM Tris-KOH
(pH 8.3), 15 mM KOAc, 3.5 mM Mg(OAc),, 3.75 pg/ml
bovine serum albumin (BSA), 0.005% Tween-20, 0.005%
Nonidet-P40, 200 uM each dNTP, and 5U of Advantage® 2
Taq polymerase (Clontech, Palo Alto, CA). The PCR was
performed on an MJ Research PTC-200 thermal cycler (M]
Research, Watertown, MA) and consist of 1 cycle at 94°C for
3 minutes, 40 cycles at 94°C for 30 seconds, 60°C for 30
seconds, and 72°C for 2 minutes, with a final extension step
of 72°C for 10 minutes. The products of these reactions were
electrophoresed on 1.5% agarose gels and visualized by
ethidium bromide staining. Bands representing PCR prod-
ucts of the predicted size were excised from the gel, and
extracted and purified using a commercially available nu-
cleic acid-binding resin (Qiaex II Gel extraction kit, Qiagen).

Isolated fragments were ligated into a T/A type cloning
vector (pGEM®—T Easy vector systems; Promega, Madison,
WI). Following transformation, growth, and blue-white
selection in competent cells (SE DH50 competent cells, Life
Technologies Inc, Rockville, MD), the DNA from positive
clones was isolated. Nucleotide sequences of both strands
were determined by dideoxy nucleotide methodology using
an automated sequencer (Model 373; Applied Biosystems,
Foster City, CA). Nucleotide sequences of the PCR prod-
ucts were analyzed using Align™ and Contig™ sequence
alignment software programs (Vector NTI™; Informax Inc,
North Bethesda, MD) and compared to known sequences
using the NCBI BLAST program (Altschul et al., 1990), and
the IMGT/HLA database (Robinson et al., 2001).

Quantitative PCR

Real-time PCR systems for mink S9 and the genes of
interest were run in separate wells. cDNA was examined
using an intercalating fluorescent dye PCR (Bowen et al.,



Differential Gene Expression in Oiled Mink 301

OVIOLLYOOOVOVOOLODODLD
VOOOV.LOLIDLLVVOOVOLOOOLOV
OOLOVVOOLOVVLOOVOALVIVVOD

OODLVVODIVIIVOVOOVOLD
O0IDI1D0VOV.LOLODOVOOOLLOVOD
VILVOLOVOOLLOOVOOLOOLOVOOD

OOVVOIVILOOVOLOVOVOVVVD
OVVVDOOVOOLOOVILVIOVVOLVD
OLLLOLOOVVOLOOLOOLOOVOLOV
OADLSLIOVODIOOVIOOVOVOD
ODLVVVIVVADLOLOADDDD
LOAVOV.LYVODWOOSLOLOYOLLLD
OOOLLOODLLODOVIOLIOLD
OOLLOLVOLOOVODODOOLVOLD
OLLLLOLILDOIOOLLOODDOVIOL
VVO.LALOLLOVOVIOOMOIOLOLVD
ODLLYOILOV.LOVOLVIVOLLLYVOLOVD
OVOVLOLINVVOVOLLOLLLVOOLVV.LD
LOLLOOLOLVOLOODIDLLOLLOD
OVOOOLOLOLLLOVOOVVOVOLYD
OLOODLLVOVLODLVOOOLVODD
OVLVOLVVOLVVLOOVDLVOVOOD
DLODOLOODOVIOIDLVOLVOLYD
OLVVLVLVOLVVOULLOVOLOLOLOD

T4edX0d
THd9dIO
TH9YIH.L
91
Tr4dd >z
™vaa
amwvoda
NOdH
TY4LAD
ow
ae6s
gZ-XOO
[R:LEONN
ISONI
¢do1-11
Ta81-1I
eI
-1
1¥0ZdSH
1406dSH
addan
Ao
ggyd
THIHY

DVOVOOHVIOLIOLOVOOIVD
O00VOOVIOOLOLOVIODLOVOIDLL
OVOILOLOVOOVVOIIVVVIOVIOD
OLODLOALODIDYDOOLOAD
OALOODOOVOSOVOODD
VILOOLOLOODLOVODILOVV.LY
OOLVOLLLYVO.LVOOOVOVLOVOD
ODLVOVVOVLOLVOVOOIDIOLLOLY
OLOVOOVIOOLOVVVIOOLOOVOOV
OVLVLLOOODDDLODOVIOLIOOOV
OLLLOOYDIDIVOHIDIODHIDILO
VOLOSOLOLOOLOOLLOLOOVD
D00DODLODLOIDVVIOVIOV.LOVO
DOOVOLODVIOIVIOOVVOIOVO
ODLLOOOLOOVLLODOVVLLLOVD
LOVALVOUDLYVOOLOOVIVVOLVO
OVOOLOVVOODLILVOODODLIOLND
LVOOVOOIODLLVYOLOVODILOVVD
DLOOLOVILOOVOOVODDOIOOV
VOOLVOOVOOLOVVODOVOLOOO
ODLOOVVVOIDLOVOOLOVOOVO
DDOOLVVOIDVVIOODLVVOLOO
DOLODLOLOVODLVLOVOLVLVOD
DLVOVVVOOOVVVOVVIAVVOVOVOD

11€dX0d
14d9dIO
Td9HL
149-T1
1.09dd
winvaa
anvod
140dH
[41LAD
143w
1d6S
1d42-XOD
1494D.L
[4SONI
¢d01-T11
1481-11
1421-11
14211
[40LdSH
1406dSH
aiddn
HNTO
14994
[TIHV

€dX0dq

urjo1d 3urpuIq-yN A[qrnput piod
101da5a1 suourIoy proifyfg,
9-UDNIIAU]

4ada

viaa

voa

dICdNOAdH

Tonquyur sisd[0140 Juswardwo)
UIDUOIYIO[[BIRIN

6S

¢-X00

gao1

SON!

OT-UuBnop3u]
81-UB[MoLIU]
CI-UBnopU]
Z-unnafIaju]

0, urdyoid yooys jea

06 urar01d Yoys jesay
aserysuenjAuoInonS-Jdan
9SeIdJSURI}-G-aUOTIRIN[D)
©19q 101dooa1 uaSonsy
103daoa1 w0qIEd0IpAY [ATY

,€—,5 douanbag

1owrrd 2s19AdYy

,€—,5 ouanbag

nwnd premiog

1S2I2)UI JO JUID)

sauan) uly jo uonesyrdury 10j saousnbag rowiig aerousdoq 1 d[qel,




302 Lizabeth Bowen et al.

2006). Each reaction contained 500 ng DNA in 25 pl vol-
umes with 20 pmol SSP, Tris-Cl, KCl, (NH,),SO,, 2.5mM
MgCl, (pH 8.7), dNTPs, HotStar Taq DNA Polymerase
(Quantitect SYBR Green PCR Master Mix; Qiagen,
Valencia, CA), and 0.5 units uracil-N-glycosylase (Roche,
Indianapolis, IN). Amplifications were performed in an
ABI 7300 (Applied Biosystems) under the following con-
ditions: 2 minutes at 50°C, followed by 15 minutes at 95°C,
and 35 cycles of 94°C for 30 seconds, 58°C for 30 seconds,
and 72°C for 30 seconds, with a final extension step of 72°C
for 10 minutes. Reaction specificity was monitored by
melting curve analysis using a final data acquisition phase
of 60 cycles of 65°C for 30 seconds and verified by direct
sequencing of randomly selected amplicons (Bowen et al.,
2006).

Gene expression was analyzed by relative quantitation,
using the comparative Cr (cycle threshold) method; values
are expressed relative to a calibrator (weakest signal of the
normalized values) (Bowen et al., 2006). Amplification
efficiencies of S9 and the other genes of interest (GOI) were
determined using six dilutions of cDNA preparations (run
in triplicate).

Statistical analysis was performed in NCSS (Number
Cruncher Statistical System). Differences between GOI
transcription were analyzed with standard #-tests. Differ-
ences were considered significant if P < 0.05.

RESuULTS

Quantitative PCR

Twenty-three genes, representing approximately 10 physi-
ological pathways and one endogenous control gene, were
amplified and sequenced (Table 2). Genes were divided
into broad functional categories based upon biological
relevance, i.e., immunomodulation, inflammation, cellular
stress-response, cytoprotection, tumor suppression, repro-
duction, xenobiotic and metal metabolism, antioxidant
metabolism, and cell-cell adhesion.

Quantitative real-time PCR systems were developed
and optimized based upon these previously unpublished
sequences (Table 3). Gene expression differed between fuel
oil-fed versus control mink; these differences were not al-
ways evident in cells derived both from blood and spleen
(Table 4). Decreased expression of 11 genes was identified
in oil-fed mink; results were significant for 6 of these genes
(interleukin-18, P = 0.002; interleukin-10, P = 0.04;

inducible nitric oxide synthase (iNOS), P = 0.01; cycloox-
ygenase-2 (COX-2), P = 0.047; complement cytolysis
inhibitor (CLI), P = 0.05; thyroid hormone receptor, P =
0.01). Increased expression of eight genes was identified in
oil-fed mink; results were significant for two of these genes
(heat shock protein 70 (HSP70), P = 0.02; interleukin-2
(IL-2), P = 0.04). Gene expression was virtually identical
between fuel oil-fed and control mink in four of the genes
(heat shock protein 90 [HSP90]; transforming growth
factor-beta [TGFf]; and major histocompatibility complex
class IT DQA and DRB).

DiscussIioN

The pathophysiologic effects of oil exposure undoubtedly
impact multiple organ systems. Ingestion of low concen-
trations of petroleum hydrocarbons has been associated
with reproductive failure, genotoxicity, hematological
changes, or impaired immune function (Bickham et al,
1998; Mazet et al., 2000, 2001; Burchiel and Luster, 2001;
Schwartz et al., 2004a,b). Exposure to xenobiotics also has
been implicated in compromised immunological health as
well as increased incidence of disease (Harvell et al., 1999).

Quantitative real-time PCR was employed as a sensi-
tive and specific assay for detecting fuel oil-induced chan-
ges in gene expression in mink. Our study suggests that
animals exposed to petroleum oil have alterations in mul-
tiple physiological pathways including immunomodula-
tion, inflammation, cytoprotection, calcium regulation,
cellular stress-response, metal metabolism, xenobiotic
metabolizing enzymes, tumor suppression, reproduction,
antioxidant enzymes, and cell-cell adhesion. A variety of
immunologically relevant genes were differentially ex-
pressed in fuel oil exposed versus control mink. The T cell
cytokine, IL-2, was up-regulated in mink exposed to fuel
oil. This would suggest some level of increased T cell
activation as IL-2 is classically considered a T cell growth
factor (Kindt et al., 2007). Expression of the regulatory
cytokines, IL-10 and IL-18, were decreased in exposed
mink. IL-10 is largely of T cell origin and is typically
considered an antiinflammatory mediator due to suppres-
sion of macrophage activation, whereas IL-18 is produced
by macrophages and dendritic cells and is considered a
proinflammatory cytokine by inducing production of
interferon gamma by T cells (Kindt et al., 2007). While it is
not possible to suggest a specific impact of these pertur-
bations, due to the pleotrophic and often redundant
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activity of cytokine activity, it is ample evidence of an
immunologic insult. Two additional genes of immunologic
interest, INOS and COX-2, were down-regulated in fuel oil-
fed mink. Both of these genes are induced upon activation
of phagocytic cells, iNOS being associated with production
of a bacteriocidal environment and COX-2 being integral in
production of proinflammatory prostaglandins (Kindt
et al., 2007). Thus, taken together, a reduction of the
expression of these two genes would support compromised
activity of macrophages and neutrophils. The differential
expression of complement cytolysis inhibitor was initially
observed using the human microarray and verified to be
down-regulated by quantitative PCR. The product of this
gene has been described as interfering with the cytolytic
function of the membrane attack complex in the comple-
ment cascade (Jenne and Tschoopp, 1989). Again, while the
significance of this perturbation is unknown, it provides
additional evidence that ingestion of fuel will impact the
immune system.

Two additional genes were identified with altered
expression. HSP70 was up-regulated in fuel oil-fed mink.
HSP70 is an intracellular molecular chaperone and is typ-
ically up-regulated by cells in response to an insult (Tsan
and Gao, 2004). Up-regulation of this gene is good evi-
dence that the ingestion of fuel oil resulted in cellular stress.
Thyroid hormone receptor, a nuclear membrane receptor
tightly associated with chromatin, was down-regulated.
This receptor is a DNA-binding protein that regulates gene
expression (Tsai and O’Malley, 1994). While the potential
impact of this specific perturbation is unknown, its altered
expression would be consistent with the presence of
endocrine-disrupting compounds in fuel oil.

Results from quantitative PCR differed between sam-
ples taken from spleen and CPT tubes. While differential
gene expression was most evident in spleen, the identifi-
cation of two affected genes in the peripheral blood is
encouraging; peripheral blood provides a much more
accessible sample, as compared to internal tissues, when
sampling free-ranging animals. The data generated in this
project provides the justification for expansion of this mink
model to identify additional genes affected in peripheral
blood leukocytes from animals exposed to petroleum or
other contaminants. Such future efforts will be comple-
mented by the recent development of specialized blood
collection tubes permitting “immediate” fixation of leu-
kocyte mRNA upon blood collection that will facilitate
identification of gene transcripts with short half-lives, the
latter being readily degraded during routine transport of

necropsy, biopsy, and/or blood samples to the laboratory
for processing.

The need to develop molecular tools for evaluating
physiological, biochemical, and histopathological effects of
chronic exposure to petroleum oil and other xenobiotics in
the marine environment is obvious (Peterson et al., 2003).
The quantitative real-time PCR assay developed in this
study for detecting petroleum oil-induced changes in gene
expression in mink provides a framework for monitoring
the effects of sublethal levels of contaminants and for
facilitating the assessment of ecosystem health.
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