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ABSTRACT

Fire is an important feature of many forest ecosystems, although the quantification of its 
effects is compromised by the large scale at which fire occurs and its inherent unpredict-
ability.  A recurring problem is the use of subsamples collected within individual burns, 
potentially resulting in spatially autocorrelated data.  Using subsamples from six different 
fires (and three unburned control areas) we show little evidence for strong spatial autocor-
relation either before or after burning for eight measures of forest conditions (both fuels 
and vegetation).  Additionally, including a term for spatially autocorrelated errors provid-
ed little improvement for simple linear models contrasting the effects of early versus late 
season burning.  While the effects of spatial autocorrelation should always be examined, it 
may not always greatly influence assessments of fire effects.  If high patch scale variabili-
ty is common in Sierra Nevada mixed conifer forests, even following more than a century 
of fire exclusion, treatments designed to encourage further heterogeneity in forest condi-
tions prior to the reintroduction of fire will likely be unnecessary.
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INTRODUCTION

Fire is fundamental in shaping most terres-
trial ecosystems (Bond and Keeley 2005).  
However, understanding fire effects remains 
elusive in part because fires are typically un-

planned, not normally under experimental con-
trol, and occur at spatial scales of hundreds to 
thousands of hectares; these features are at 
odds with classical experimental design and 
analysis.  Experimental burning in forests, 
where it has been attempted, is constrained by 
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the logistical and financial resources needed to 
conduct the fires, limiting the size, intensity 
and number of replicated burning treatments 
(Fulé et al. 2004, Stephens and Moghaddas 
2005, Fulé et al. 2006, North et al. 2007, 
Schwilk et al. 2009).  Opportunistic studies of 
fire effects frequently rely on data collected 
from subsamples within a single burned area.  
These subsamples may be correlated both spa-
tially and temporally, and when subjected to 
standard statistical testing provide reduced es-
timates of variation (error), increasing the like-
lihood of committing a Type I error (the chance 
of detecting a significant effect of fire when no 
meaningful effect has occurred).  That is, the 
subsampled data underlying these tests are 
pseudoreplicated (Hurlbert 1984).

Interpreting pseudoreplicated fire effects 
data will always present challenges (van Man-
tgem et al. 2001), but some of these difficulties 
could be mitigated by estimating spatial auto-
correlation (the correspondence of nearby sam-
pling units) and temporal autocorrelation (the 
similarity of samples measured repeatedly over 
time), and controlling for these relationships in 
analyses of fire effects (Legendre 1993, Leg-
endre and Legendre 1998, Fortin and Dale 
2005, Bataineh et al. 2006).  It is unclear; how-
ever, to what degree the consideration of auto-
correlation, particularly spatial autocorrelation, 
would improve our understanding of fire ef-
fects.  Small scale heterogeneity in fire effects 
may be common as daily and seasonal differ-
ences in fire weather and fuel moisture interact 
with variability in topography, fuel loading, 
and vegetation during burning (Kilgore 1973, 
Knapp and Keeley 2006).

The degree of spatial heterogeneity also 
has implications for an ongoing debate con-
cerning the need for mechanical thinning prior 
to the reintroduction of prescribed fire in Sier-
ran mixed conifer forests.  Arguments in favor 
of pre-fire thinning are based on the notion that 
a century of fire exclusion has led to the ho-
mogenization of previously heterogeneous 

stands, and the application of fire without pre-
ceding silvicultural treatments will perpetuate 
these changes in forest structure (Bonnicksen 
and Stone 1981, 1982; Bonnicksen 1989).  
Here we show that there is only weak evidence 
for pervasive spatial autocorrelation both be-
fore and after prescription burning for mea-
sures of fire effects relevant to managers, and 
that spatial autocorrelation had trivial effects 
when comparing the outcomes of early versus 
late season burning in a Sierra Nevada mixed 
conifer forest.

METHODS

Study Site

We conducted the study in an old growth 
mixed conifer forest within the Giant Forest 
region of Sequoia National Park, California, 
USA.  The sites have never been logged.  Fre-
quent fires characterized the forests prior to 
Euro-American settlement, but the area con-
taining the study plots has not burned since the 
late 1800s (Swetnam et al. 1992).  The climate 
is Mediterranean, with hot, dry summers and 
cool, wet winters, with about half of annual 
precipitation falling as snow (Stephenson 
1988).  Soils are relatively young (mostly in-
ceptisols) and derived from granitic parent ma-
terial.

Burning Treatments

We compared the effects of early season 
burning, late season burning and no burning 
across nine experimental units using data from 
the southern Sierra Nevada node of the Fire 
and Fire Surrogate network (Schwilk et al. 
2009) (Figure 1).  The experimental units were 
each 15 ha to 20 ha in size and were located 
within larger burn areas on west to northwest 
facing aspects of variable slope at elevations 
ranging from 1900 m to 2150 m.  Burning 
treatments were applied using a completely 
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randomized design with three replicates per 
treatment.

Early season burns were conducted on 20 
and 27 June 2002.  Late season burns were 
conducted on 28 September, and on 17 and 28 
October 2001.  Burns were ignited with strip 
head fires started at the highest point in the 
unit, and designed to burn at low to moderate 
intensities.  The burns were surface fires, with 
a few cases of individual trees torching.  
Weather and fuel conditions at the time of the 
burns are provided in Knapp et al. (2005).

Sampling

We took all pre- and post-treatment data in 
plots referenced to a 50 m grid in the interior 
of each unit.  To minimize edge effects, the 
grid system was surrounded by a 50 m to 100 
m buffer that was also treated.  We averaged 
fuels data (total fuels [Mg ha-1] and large fuels 
[woody fuels >76 mm diameter, Mg ha-1]) 
from two transects at each of 36 grid points per 
experimental unit.  Forest structure data (stand 
density [trees >1.37 m in height ha-1], basal 
area [m2 ha-1]) were taken from ten 0.1 ha sub-
plots at each experimental unit.  We took com-
munity composition data (forb cover, grami-

Figure 1.  Location of the Giant Forest area within Sequoia National Park, California.  Magnified area 
shows the plot layout for the Sequoia National Park site of the National Fire and Fire Surrogate study.  Plot 
labels designate treatment (early season burning, late season burning, or unburned control), while rect-
angles within the plots represent randomly located 0.1 ha subplots where fire effects data were collected.
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noid cover, shrub cover) at the same ten 0.1 ha 
subplots at each experimental unit, while un-
derstory species richness data were averaged 
from nine 1 m2 quadrats at each 0.1 ha subplot.  
We measured fuels before and one year fol-
lowing burning.  We measured trees, shrubs, 
and herbaceous vegetation before and three 
years following burning.

Statistical Tests

We used the Mantel test to measure spatial 
dependence among samples (Legendre 1993, 
Legendre and Legendre 1998, Fortin and Dale 
2005).  The Mantel test compares two or more 
distance matrices, one matrix (Aij) being differ-
ences in the variable of interest (e.g., fuel load-
ing, stand density, etc.), with the other matrix 
(Bij) being the distance between the sampling 
units.  The Mantel test computes the correla-
tion between the two distance matrices, with 
the formula:
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where n is the number of elements in the dis-
tance matrix and sA and sB are standard devia-
tions of the elements of the Aij and Bij matrices.  
The normalized statistic behaves similar to the 
Pearson correlation coefficient, varying be-
tween –1 and +1, so that coefficients can be 
compared to other variables at the same site or 
to similar variables at other sites.  We deter-
mined the overall significance of spatial rela-
tionships by permutation testing (standard tests 
are unreliable because the distances in the ma-
trices are not independent [Goslee and Urban 
2007]).

We assessed spatial correlations among 
subplots within each experimental unit before 
and after burning for measures of fire effects 
that are relevant for resource managers, includ-
ing total surface fuels, large fuels, stand densi-
ty, stand basal area, herbaceous vegetation 
cover, graminoid vegetation cover, shrub cov-
er, and understory species richness.  We sub-
jected each of these measures within each ex-
perimental unit to a Mantel test using Euclide-
an distances, with 10 000 permutations used to 
establish significance (α = 0.05).  Although the 
large number of tests we performed would ar-
gue for an adjustment of the critical value, we 
wanted these tests to be as liberal as possible 
to search for evidence of significant spatial au-
tocorrelation (e.g., if we used a Bonferroni 
correction for our 144 tests, we would have a 
critical value of α = 0.05 ÷ 144 = 0.000 35, (a 
value not surpassed by any of our tests).  For 
both the pre-fire and post-fire intervals we cal-
culated the ratio of significant Mantel tests 
versus the total number of tests conducted, and 
created 95 % confidence intervals for this ratio 
from 10 000 bootstrapped samples.

To determine the effects of spatial autocor-
relation on an assessment of fire effects, we 
contrasted the results of tests that compared 
early versus late season burning using ordinary 
least-squares regression (OLS) and a spatial 
generalized least squares regression (GLS).  
The OLS model assumes no spatial autocorre-
lation among samples, potentially leading to 
excessive reductions in standard errors of the 
parameter estimates (and thereby inflating the 
probability of Type I errors), while the GLS 
model included spatial structure into the error 
term of the regression (Pinheiro and Bates 
2000).  For the GLS model, we used a spheri-
cal spatial error structure, with the inclusion of 
a nugget effect where needed (Cressie 1993).  
Our response variables were the change in a 
forest attribute (e.g., paired differences of stem 
densitypre-fire – stem densitypost-fire) as predicted 
by season of burning.  Season of burning con-
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trasts are presented relative to early season 
burning.  Parameters were estimated using 
maximum likelihood and model comparisons 
were performed using AICc, the Akaike infor-
mation criterion corrected for sample size 
(Burnham and Anderson 2002).  Model selec-
tion is typically done by referencing the model 
with the lowest AICc value.  Here, to empha-
size the inclusion of spatially autocorrelated 
errors, we made our selection relative to the 
GLS model (Δ AICcGLS  = AICcOLS – AICcGLS), 
with evidence to include spatial autocorrela-
tion when Δ AICcGLS > 2, and evidence not to 
include spatial autocorrelation when Δ AICcGLS 
< –2.  Strong evidence to include or exclude 
spatial autocorrelations is present when the ab-
solute value of Δ AICcGLS > 10.  Mantel tests 
were conducted using the “ecodist” package, 
and regression tests used the “nlme” package 
written for the R language (R Foundation for 
Statistical Computing, Vienna, Austria).

RESULTS

The Mantel tests did not show evidence for 
widespread spatial autocorrelation either be-
fore or after burning for fuels (Table 1a) or 
vegetation (Table 1b).  The pre-fire interval 
had nine significant Mantel tests out of 72 tests 
(ratio of significant tests = 0.13; 95 % CI = 
0.06 to 0.22), which is only marginally greater 
than the frequency of significant tests expected 
by chance alone (i.e., 1 out of 20, or 0.05).  
The post-fire interval had even fewer signifi-
cant Mantel tests, with the 95 % CI overlap-
ping the number of significant tests expected 
by chance (seven out of 72 significant tests, ra-
tio of significant tests = 0.10; 95 % CI = 0.03 
to 0.17).  There was no obvious pattern of sig-
nificant results in any measure of fire effects 
either before or after burning, with each mea-
sure of fire effects averaging only a single sig-
nificant Mantel test during both the pre- and 
post-fire interval (average ratio of significant 
tests =  0.11; range = 0.00 to 0.33).

The lack of evidence for significant spatial 
autocorrelation was also reflected in our com-
parisons of the OLS and spatial GLS models 
(Table 2).  In only three of eight tests (changes 
in stand density, forb cover, and species rich-
ness) was the inclusion of spatial autocorrela-
tion justified by AICc.  In four of eight tests, 
the inclusion of spatial autocorrelation was not 
justified (Δ AICcGLS < –2), with one test (change 
in basal area) giving essentially equal evidence 
for the OLS and GLS models.  In only one test 
(change in forb cover) was the absolute differ-
ence in AICc > 10, suggesting that for most 
measures of fire effects there was approxi-
mately equivalent evidence for the OLS and 
GLS models.  In only a single instance could 

Table 1a.  Normalized Mantel test statistics for pre-
fire and post-fire measurements of fuels.  Mantel 
test statistics in bold signify significant spatial cor-
relations within experimental units at α = 0.05. 

Observation Treatment

Mantel r
Total fuels
(Mg ha-1)

Large fuels
(Mg ha-1)

Pre-fire

early 0.0961 0.0832
early 0.1681 0.1061
early 0.0142 0.0003
late 0.0651 0.0380
late -0.0053 0.0524
late 0.1694 0.1787

unburned -0.0222 0.0364
unburned -0.0191 -0.0424
unburned -0.0050 0.0375

Post-fire
 

early 0.0815 0.1294
early 0.0640 0.0763
early -0.0250 -0.0281
late 0.0193 0.0957
late -0.0430 -0.0690
late -0.0032 0.0190

unburned 0.1186 0.1746
unburned 0.0629 0.0227
unburned 0.0494 0.0583
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Table 2.  Coefficients for changes following fire as determined by season of burning using ordinary least-
squares regression (OLS) and spatial generalized least squares regression (GLS).  Regression parameters 
(β) describe the difference of late season burning relative to early season burning.  AICc values of OLS and 
GLS models are compared relative to the GLS model (ΔAICcGLS).  

Observation Treatment

Mantel r  
Stand 

density 
(stems ha-1)

Basal 
area

(m2 ha-1)

Forb 
cover 
(%)

Graminoid 
cover 
(%)

Shrub 
cover 
(%)

Species 
richness 

(m2)

Pre-fire

early -0.0214 0.0046 -0.0574 0.1624 -0.1282 -0.1241
early 0.0664 0.0454 0.2591 -0.0434 0.4878 0.4589
early 0.0459 0.0297 0.0781 0.0021 0.0961 0.1743
late 0.1907 0.0830 -0.0162 -0.2049 -0.1395 -0.2009
late 0.3339 -0.1076 -0.0544 0.3857 -0.0753 0.2311
late 0.0156 0.1366 -0.0358 0.0495 0.2654 -0.1754

unburned 0.1313 0.1064 0.4808 0.1083 0.2900 0.2333
unburned 0.4008 0.3319 -0.1771 0.1789 -0.1207 -0.1056
unburned -0.0372 -0.1592 0.0045 0.1470 -0.0513 -0.0950

Post-fire
 

early 0.4763 -0.0393 0.0168 -0.0029 0.2973 -0.0155
early -0.2356 0.0397 0.1430 -0.0480 -0.0185 0.2230
early 0.2779 -0.0373 0.0191 0.0564 -0.2011 0.0013
late -0.0844 -0.2104 -0.1105 -0.0790 -0.0584 -0.1062
late 0.1009 0.0935 0.0673 -0.0742 -0.1050 -0.0010
late 0.4551 0.2165 0.0049 -0.0055 0.1364 0.1905

unburned 0.2032 0.1414 0.5612 0.3111 0.2978 0.1827
unburned 0.3826 0.3597 -0.0660 0.1680 -0.0039 -0.1181
unburned -0.0320 -0.1168 0.1633 -0.0147 0.1916 -0.1625

Table 1b.  Normalized Mantel test statistics for pre-fire and post-fire measurements of forest structure and 
understory community composition.  Mantel test statistics in bold signify significant spatial correlations 
within experimental units at α = 0.05.

OLS  GLS 
ΔAICcGLSPost-fire change β ± SE P AICc β ± SE P AICc

Total fuels (Mg ha-1) 35.16 ± 10.43 0.001 2497.7 35.06 ± 10.98 0.002 2506.2 -8.4
Large fuels (Mg ha-1) 9.4 ± 7.61 0.218 2361.6 9.76 ± 7.92 0.219 2365.2 -3.6
Stand density (stems ha-1) 27.96 ± 32.42 0.392 761.3 17.96 ± 44.55 0.688 752.3 9.1
Basal area (m2 ha-1) 0.93 ± 3.59 0.796 497.3 -0.61 ± 4.22 0.885 496.1 1.1
Forb cover (%) 6.11 ± 3.16 0.058 482.1 6.18 ± 4.6 0.184 467.6 14.5
Graminoid cover (%) -0.54 ± 0.26 0.040 181.1 -0.54 ± 0.26 0.041 186.1 -5.0
Shrub cover (%) 5.85 ± 2.05 0.006 429.7 5.62 ± 2.24 0.015 434.7 -5.0
Species richness (m2) 0.28 ± 0.27 0.309 186.5   0.27 ± 0.33 0.405 181.4   5.1
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the inclusion of spatial autocorrelation con-
ceivably give rise to a different interpretation 
of the results when comparing P values (criti-
cal value α = 0.05, change in forb cover: OLS 
P = 0.058, GLS P = 0.184).

The parameter estimates for the OLS and 
GLS models were generally similar.  As ex-
pected, the standard errors of these estimates 
were consistently smaller in the OLS models 
relative to the GLS models (paired permuta-
tion test, P = 0.016), although the magnitude 
of these differences were slight (average stan-
dard error reduction in the OLS models = 
13.6 %), suggesting that the OLS estimates did 
not greatly inflate the risks of Type I errors.  
Note that some of these tests imply differences 
in the effects of early versus late season pre-
scribed burning, with late season burning re-
sulting in the greater consumption of total fu-
els (in agreement with Knapp et al. [2005]), 
lesser reductions in graminoid cover and great-
er reductions in shrub cover.

DISCUSSION

It appears, at least in the mixed conifer for-
ests of the Sierra Nevada, that there is little 
evidence for pervasive significant spatial auto-
correlation for many of the measures of fire ef-
fects important to managers (e.g., fuels, forest 
structure, understory community structure).  
We do not, however, take this as evidence that 
spatial autocorrelation should be ignored in 
statistical tests of fire effects.  The ratio of sig-
nificant Mantel tests was above 5 % both in the 
pre-fire and post-fire intervals, and some tests 
were highly significant.  In addition, compar-
ing linear models with and without spatial au-
tocorrelation (OLS versus GLS models), there 
were a minority of tests that supported the in-
clusion of spatial autocorrelation (though the 
effects of spatial autocorrelation was minor 
and did not influence model interpretation).  
The infrequent presence of significant spatial 
autocorrelation precludes the creation of sim-

ple rules concerning the presence or absence 
of spatial autocorrelation for fire effects stud-
ies.  These findings underscore the idea that 
the effects of spatial autocorrelation should be 
routinely checked in ecological studies (Leg-
endre 1993, Legendre and Legendre 1998), al-
though it may not often prove to be pivotal in 
the assessment of fire effects.  As a cautionary 
note, Diniz-Filho et al. (2003) found that in-
cluding a term for spatial autocorrelation when 
its effects are weak may lead to subtle biases 
in model interpretation (i.e., a reduced empha-
sis on predictors that operate at small spatial 
scales).  If subsampled data are used as inde-
pendent replicates in fire effect studies, other 
problems arising from pseudoreplication still 
remain (e.g., temporal autocorrelation, non-
representative samples), though spatial auto-
correlation may not heavily influence the re-
sults.

Our results imply that forest conditions be-
fore and after burning have a high degree of 
small, patch scale spatial heterogeneity.  Knapp 
and Keeley (2006) also found evidence for 
high patch scale heterogeneity in fire severity, 
as measured by scorch heights and area burned, 
which they attributed to variation in topogra-
phy, fuel characteristics and forest structure 
(including pre-burn species composition), and 
sometimes, as in our study, season of burning.  
Higher fuel moistures in early season burns 
likely inhibit effective fuel continuity, thereby 
increasing small scale differences in fire sever-
ity.  High patch scale heterogeneity is similar 
to the high levels of heterogeneity in fire se-
verity commonly observed at the landscape 
scale in the Sierra Nevada (Collins et al. 2007) 
and in other forest systems (e.g., Turner et al. 
1994).  We suspect that small scale heteroge-
neity is a general feature of fire effects, partic-
ularly in forest types that burn at low to mod-
erate intensity (in contrast to crown fire sys-
tems that may have lower patch scale hetero-
geneity [Turner and Romme 1994]).
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The presence of high patch scale variabili-
ty in pre- and post-fire stand conditions has 
important consequences for the management 
of Sierra Nevada forests.  Bonnicksen and 
Stone (1981, 1982) and Bonnicksen (1989) 
have argued that fire exclusion has resulted in 
the homogenization of historically heteroge-
neous forests, and application of prescribed 
fire without prior silvicultural treatment would 
maintain unnaturally uniform forest condi-
tions.  This view has been challenged on sev-
eral accounts (e.g., imprecise knowledge of 
historic forest conditions [Stephenson 1999]), 
and our results also demonstrate that even fol-
lowing a century of fire exclusion, forest con-
ditions are far from homogeneous either before 
or after prescription fire.  Thus, the application 
of treatments prior to prescribed burning to en-
courage further stand heterogeneity either in 
fuels or vegetation is likely unnecessary in Si-
erra Nevada mixed conifer forests.

The lack of strong spatial autocorrelation 
also has implications for the interpretation and 
analysis of fire effects monitoring data.  If spa-
tial autocorrelation is generally weak, it is 
doubtful that one or even several small moni-
toring plots within a burned area will provide a 
general description of overall effects of a given 
fire.  Currently, a national plot-based fire ef-
fects monitoring program (FFI, http://frames.
nbii.gov/ffi) measures fuels and forest struc-
ture within small-scale plots (≤0.1 ha), usually 

with only a single plot established within each 
burned area (Paul Reeberg, National Park Ser-
vice, personal communication).  Besides its 
potential to support satellite-based observa-
tions of fire effects (Key 2006), these data 
might be best used when individual plot data 
are assembled together across a particular veg-
etation type to offer a broad picture of fire ef-
fects (e.g., Keifer 1998).

We conclude that the conditions and re-
sponse of forests to fire are complex, and are 
certainly more variable than is sometimes sup-
posed.  It is an overgeneralization to consider 
an area as simply burned or unburned, as con-
ditions prior to, during and following fires 
combine to create heterogeneous conditions.  
We do not, however, possess a mechanistic un-
derstanding of what drives this complexity.  
Some factors are obvious, such as variation in 
slope or vegetation types within a burned area.  
Other factors are surprising (e.g., pre-burn spe-
cies composition [Knapp and Keeley 2006]), 
or will probably remain elusive (e.g., small 
changes in fire weather during burning), and it 
is likely that many of these factors interact in 
unexpected ways.  Understanding these mech-
anisms is becoming increasingly important in 
an era where forest and fire conditions are rap-
idly changing (Westerling et al. 2006, van 
Mantgem et al. 2009), obviating simple pre-
dictions of fire effects.
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