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Abstract. Reliable prediction of the effects of landscape change on species abundance is
critical to land managers who must make frequent, rapid decisions with long-term
consequences. However, due to inherent temporal and spatial variability in ecological
systems, previous attempts to predict species abundance in novel locations and/or time frames
have been largely unsuccessful. The Effective Area Model (EAM) uses change in habitat
composition and geometry coupled with response of animals to habitat edges to predict
change in species abundance at a landscape scale. Our research goals were to validate EAM
abundance predictions in new locations and to develop a calibration framework that enables
absolute abundance predictions in novel regions or time frames. For model validation, we
compared the EAM to a null model excluding edge effects in terms of accurate prediction of
species abundance. The EAM outperformed the null model for 83.3% of species (N¼ 12) for
which it was possible to discern a difference when considering 50 validation sites. Likewise, the
EAM outperformed the null model when considering subsets of validation sites categorized on
the basis of four variables (isolation, presence of water, region, and focal habitat).
Additionally, we explored a framework for producing calibrated models to decrease
prediction error given inherent temporal and spatial variability in abundance. We calibrated
the EAM to new locations using linear regression between observed and predicted abundance
with and without additional habitat covariates. We found that model adjustments for
unexplained variability in time and space, as well as variability that can be explained by
incorporating additional covariates, improved EAM predictions. Calibrated EAM abundance
estimates with additional site-level variables explained a significant amount of variability (P ,
0.05) in observed abundance for 17 of 20 species, with R2 values .25% for 12 species, .48%
for six species, and .60% for four species when considering all predictive models. The
calibration framework described in this paper can be used to predict absolute abundance in
sites different from those in which data were collected if the target population of sites to which
one would like to statistically infer is sampled in a probabilistic way.

Key words: abundance; birds; calibration; Effective Area Model (EAM); model testing; null model;
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INTRODUCTION

Given the pace and extent of human-induced land-

scape change, conservation decisions often need to be

made more rapidly than relevant data can be collected

(Côté and Reynolds 2002). While there have been many

studies that attempt to explain patterns of species

occurrence or abundance in relation to habitat variables,

few studies have attempted to predict abundance in

novel locations (Stauffer 2002). An ability to predict

species occurrence or abundance in previously unstudied

locations is critical to the ability of land managers to

make reliable, rapid decisions in the face of potential

landscape alterations (Noon et al. 1980).

Predictions of species occurrence patterns have

experienced modest success (Block et al. 1994, Stauffer

2002), but abundance has been much more difficult to

predict (Rotenberry 1986, Morrison et al. 1987, Gutz-

willer and Barrow 2001). However, accurate predictions

of species abundance are much more useful than mere

occurrence. Occurrence predictions enable managers to

identify areas in which species are present, but cautions

notwithstanding (Van Horne 1983), abundance predic-

tions enable managers to prioritize conservation areas,

and to develop specific management objectives pertain-

ing to population size and trends (see Bock and Jones

2004). Absolute (vs. relative) abundance predictions also

enable land managers to prioritize areas based on results

obtained from different studies and regions. Despite its

importance to conservation planning, accurate predic-

tion of absolute abundance remains a largely unachieved

goal (Rotenberry 1986, Stauffer 2002, Wiens 2002).

Manuscript received 21 January 2005; revised 30 August
2005; accepted 14 September 2005. Corresponding Editor: T. R.
Simons.

3 E-mail: arriana@cnr.colostate.edu

1090



One of the principal difficulties in predicting species

abundance under novel conditions is the inherent

variability in ecological systems (Rotenberry 1986,

Stauffer 2002, Wiens 2002). Predictions are often

hampered by random or unpredictable fluctuations in

time and/or space due to weather, food, habitat, or

disturbance processes (Gutzwiller and Barrow 2001).

Given the inherent variability or ‘‘noise’’ in ecological

systems, the ability to predict abundance in novel

locations, or at different times at the same location, is

commonly believed to be difficult or impossible (Ro-

tenberry 1986, Stauffer 2002).

One of the principal ways to begin to understand this

otherwise unexplained variability, and to evaluate the

ability of models to accurately predict abundance, is to

investigate prediction error (Starfield 1997, Wiens 2002).

Prediction error may be caused by the inability of

models to predict under novel conditions due to

environmental variability as well as interannual fluctua-

tions in abundance (Gutzwiller and Barrow 2001). If the

goal is to accurately predict abundance for conservation

planning, prediction error is an important means for

assessing the utility of a given model (model validation).

In addition, empirical estimation of prediction error,

and adjustment for prediction error, may provide a

means to effectively adjust predictions of absolute

abundance to novel locations or to different time frames

(model calibration).

The Effective Area Model (EAM; Sisk et al. 1997,

2002) uses both habitat composition and habitat

geometry in a model structure that can be parameterized

with data collected in traditional bird population

surveys. In order to predict species abundance in novel

landscapes or regions, the EAM uses edge response

functions (e.g., change in density of a given bird species

as a function of distance from edge) along with broad-

scale vegetation (habitat) maps. Maps may be based on

remotely sensed imagery or Global Positioning System

coordinates. As used here, edge refers to an abrupt

transition in vegetation structure and/or composition

that has the potential to affect the distribution and

abundance of bird species. The EAM operates in a

Geographic Information System (GIS) framework (Arc-

View 3.2, ESRI 2001) and was developed to be a

‘‘desktop’’ management tool to predict population level

responses to potential changes in landscape configura-

tion (Sisk et al. 2002).

In order to assess whether the EAM is an improve-

ment to less complex nonspatial models, we compared

the ability of the EAM to predict abundance in novel

locations relative to a null model (Gotelli and Graves

1996). Models were assessed in terms of the difference

between prediction and observation, referred to as

prediction error. The null model provides a prediction

of abundance based solely on habitat types and areas

without considering edge effects, and thus ignores the

effects of within-habitat heterogeneity resulting from

proximity to adjacent habitat types (Sisk et al. 1997,

2002). The null model provides a benchmark for

comparison to assess whether the incorporation of edge
response functions into the model structure decreases

prediction error.
In addition to model validation, we also wanted to

assess whether the EAM predictions of abundance in
novel locations could be improved via model calibra-

tion. Calibration is often used in the general sciences as a
means to improve measurement of a biased or imprecise
parameter by adjusting its estimate with a highly

accurate measurement process that is often more
difficult or expensive (Denham and Brown 1993). For

ecological applications, calibration has been used to
convert relatively easy to estimate population indices

into estimates of abundance for a variety of taxa
(Eberhardt and Simmons 1987, Graham 2002, Hamm

et al. 2002, Yoo et al. 2003). Calibration may also be
used to adjust for inherent spatial and temporal

variability in ecological systems. It is in this sense that
the term ‘‘calibration’’ is used in this paper. Currently,

parameterization of the EAM is limited to edge response
functions that remain constant in time and space. Here

we propose a framework to improve the accuracy of
abundance predictions and to extend usage of the EAM

by adjusting the model parameterization to fit the
unique attributes of new locations and/or time frames.
Calibration of EAM predictions to new regions and

inclusion of covariates describing site-level habitat
characteristics may be an efficient way to further

incorporate habitat models along with the EAM to
improve prediction of absolute abundance.

The overall goals of this paper were to validate and
calibrate the Effective Area model for the purpose of

predicting absolute abundance in novel locations. For
model validation, our primary objective was to compare

the relative predictive ability of the EAM to a null
model, by species, in terms of prediction error.

Comparisons were made for all validation sites, as well
as subsets of validation sites from different regions, and

varying degrees of isolation, presence of water, and
different habitat types. Our second objective was to

assess whether the consideration of some site-level
factors consistently reduced EAM prediction error and

would be candidate variables to include in a calibration.
Our final objective was to explore a framework for

producing field-calibrated models to improve the pre-
diction of absolute abundance in new locations.

METHODS

Predicted abundance

We predicted abundance for the 25 most common

bird species in 50 validation sites for both the Effective
Area Model (EAM) and the null model. In order to

parameterize the EAM, we estimated edge response
functions from data obtained on the San Pedro River,

Arizona, USA, along with habitat maps developed for
each validation site. For the null model, parameter

estimates were obtained as the average interior density
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of a given species in a given habitat type, along with the

validation site maps, to predict abundance for each site.

Field protocol.—We collected data to parameterize

both the EAM and null model on the upper and middle

San Pedro River in Cochise County, Arizona, USA.

Study sites extended from 2 km north of the U.S.–

Mexico border to 145 km north of the international

border at Cascabel, Arizona. Elevation varied from 1300

m at the international boundary to 900 m in the most

northern study site. Study sites included 16 areas within

the San Pedro Riparian National Conservation Area

(NCA) managed by the Bureau of Land Management

(BLM) as well as seven sites on privately owned land

north of the NCA. The study sites provided an excellent

opportunity to study mostly natural edges between

adjacent habitats. By surveying birds within distinct

habitat types and across edge types, it was possible to

develop edge response functions and to estimate average

density within the interiors of specific habitat types for

25 species.

The San Pedro River watershed has two primary

zones of riparian vegetation extending perpendicular

from the river thalweg, or channel low point, upslope to

expansive desert scrub communities. Adjacent to the

river is a primary riparian zone that consists of gallery

forests dominated by Freemont cottonwood (Populus

fremontii) and Goodding’s willow (Salix gooddingii). A

secondary riparian zone consisted of mesquite (Prosopis

spp.) interspersed with patches of Sacaton grass

(Sporobolus wrightii). Distinct natural edges occurred

between the primary and secondary riparian and desert

scrub communities.

We investigated eight edge types representing both

sides of four distinct habitat edges. Four edge types

occurred at the primary to secondary riparian interface,

including both sides of the edge where cottonwood was

adjacent to mesquite, and both sides of the edge where

cottonwood was adjacent to grassland. Two edge types

occurred between the secondary riparian habitats at

both sides of the mesquite–grassland edge. Two edge

types occurred at the secondary riparian to nonriparian

interface, including both sides of the mesquite–desert

scrub edge. Maximum widths of sampled cover types

were 170 and 210 m for cottonwood adjacent to

mesquite and grassland; 352, 298, and 271 m for

mesquite adjacent to cottonwood, grassland, and desert

scrub; 532 and 508 m for grassland adjacent to cotton-

wood and mesquite; and 660 m for desert scrub adjacent

to mesquite.

To estimate bird density across the different types of

edges, we established 210 point transect locations on 23

sites in the upper and middle reaches of the San Pedro

River. Each site consisted of 11–14 point transect

locations on two or three transects. Points were located

100 m apart along the habitat gradient perpendicular

from the river extending through primary riparian, to

secondary riparian, to desert scrub vegetation commun-

ities. We used points located at varying distances from

habitat edges to construct edge response functions.

While the majority of points contained only one habitat

type, points close to edges contained the focal as well as

varying proportions of the adjacent habitat type, which

appropriately accounted for the influence of the adjacent

habitat type close to edges on bird density.

We used distance sampling to estimate detection

functions (Buckland et al. 2001). At each point, we

estimated distances from the observer (i.e., point center)

to individual birds by sight or sound with the aid of a

Yardage Pro 400 Laser Rangefinder (Bushnell Perform-

ance Optics, Lenexa, Kansas, USA). In order to

accurately assign birds to the appropriate distance from

edge category, we recorded sighting �60 m from the

survey point. Point transect locations were surveyed for

five minutes after an initial one-minute wait period.

Additionally, in order to meet the distance sampling

assumption of perfect detection at the point, and to

reduce potential bias resulting from evasive movement

in response to an observer, birds were recorded as an

observer approached a point. Movement of birds was

recorded to avoid double counting. We conducted

surveys from 10 minutes before sunrise until three hours

after sunrise. The order in which transects were walked

was varied systematically to avoid bias related with time

of day.

Each point was visited between six and 15 times

during the 1998–2001 field seasons for a total of 2082

point transect surveys. Ten experienced observers

conducted surveys during the 4-yr study. At the

beginning of each field season, and prior to data

collection, observers had a minimum of 2.5 weeks of

training on survey techniques including identification of

birds by sight and sound. Observers were rotated

between sites so that each point transect location was

surveyed approximately the same number of times by

each observer, each year.

Distance sampling analysis.—The distribution of

horizontal sighting distances from the observer to

individual birds was entered into program Distance 3.5

to estimate detection functions separately for each

species (Thomas et al. 1998, Buckland et al. 2001). The

detection function provides an estimate of detection

probability for each species out to a given radius from

the survey point. Detection probability, combined with

the mean count by point of a species, provides a density

estimate for each point location. Encounter rate data

were combined for a given species at each point location

for all visits within and between years, though sighting

distances used to estimate detection functions were

pooled across many points. Differing numbers of visits

to each point transect were accounted for by incorpo-

rating a survey effort multiplier in the analysis (Buck-

land et al. 2001). To improve estimation of the detection

function, 5–15% of the distance data were truncated at

distances near 60 m (Buckland et al. 2001).

Many factors affect the detection probability of a

species (Yoccoz et al. 2001). We attempted to account
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for as much of this heterogeneity as possible in the study

design by balancing observers and time of day across

survey points. Additionally, we evaluated candidate

detection functions that included habitat type as a

potentially significant source of heterogeneity in detect-

ability. In general, the detection function for each

species was allowed to vary by each of the four major

habitat types: cottonwood, mesquite, grassland, and

desert scrub. At the other extreme, points within all four

habitats were pooled to obtain a single detection

function for a given species. Intermediate approaches

included pooling two or more habitats. Whether habitat

types were pooled in relation to the detection function

depended on the audio and visual characteristics of a

given bird species in each habitat type as well as sample

size considerations (.50 detections). It was also

necessary to pool the detection function across habitat

types when a particular bird species was rare in one or

more habitat, which tends to underestimate differences

in density between habitat types since the same detection

function is used. The best detection function selected via

Akaike information criterion (AIC; Burnham and

Anderson 2002) was subsequently used to estimate

density at all points where a species was detected.

Distances of point transect locations to the closest

edge were based on differentially corrected Universal

Transverse Mercator (UTM) coordinates of points and

edges obtained with a Trimble GPS unit (Trimble

Navigation, Sunnyvale, California, USA) accurate to

2–5 m, a classified image of the upper San Pedro (U.S.

Army Topographic Engineering Center 2001), and field

reconnaissance. The number of point transect locations

varied from 18 to 42 locations per edge type. Estimates

of density (dependent variable) as a function of distance

from edge (independent variable) were used to estimate

continuous edge response functions.

EAM and null model parameterization.—Using piece-

wise linear regression or simple linear regression we

estimated 200 edge response functions for 25 species at

eight edge types. Piecewise linear regression (Toms and

Lesperance 2003) was evaluated when density appeared

to show a threshold response to distance from edge. Of

the total species–edge type combinations, the piecewise

linear regression model converged on parameter esti-

mates in 135 cases. In the remaining 65 species–edge

type combinations where a clear breakpoint was not

discernable, simple linear regression analysis was used to

estimate the edge response function (Fig. 1). All

regression models were estimated with Stata 8.0

(StataCorp 2003).

The coefficients estimated via regression modeling

were used as input parameters to the EAM and null

model. Input parameters included: (1) density at the

edge, (2) density in the interior, and (3) Dmax,

representing the maximum distance of edge influence

(Fig. 2). Piecewise linear regression provided direct

estimates of these parameters (Fig. 2). With simple linear

regression, Dmax was set equal to the maximum distance

from edge sampled. Edge density was estimated by the

intercept (density when distance ¼ 0), and the interior

density was calculated by using the linear regression

equation: interior density ¼ (edge density) þ (slope

parameter) 3 (maximum distance sampled). Even

though density estimates from point transect locations

may show spatial dependence, we concluded that use of

estimates pooled across sites did not greatly affect the

parameterization of the EAM and the null model since

least squares methods give unbiased estimates of

parameter coefficients even with dependency in the data

(Zar 1999, Greene 2000). Similarly, the assumption of

equal variance could be relaxed when the primary goal

was to estimate regression parameters rather than

conduct a statistical test on the regression equation

(Zar 1999). To parameterize the null model, we

estimated the interior density for each of the 200

species–edge type combinations. Interior density was

considered to be constant across an entire habitat patch

regardless of distance from adjacent habitats. EAM and

null model density inputs, adjusted by the vegetation

areas with and without edge effects, respectively,

provided estimates of predicted abundance.

Validation study sites.—We used 50 sites located from

,1 km to .200 km from the San Pedro River to

evaluate the predictive performance of the two models.

Validation sites were established in four distinct regions:

(1) San Pedro River sites that were not used to estimate

the edge response functions, (2) within the east and west

ranges of Fort Huachuca, (3) Sonoita Creek Preserve

managed by The Nature Conservancy, and (4) Empire

Cienega National Riparian Conservation Area managed

by the BLM. Study sites were located in Cochise, Pima,

and Santa Cruz Counties and ranged in elevation from

900 to 1200 m and in latitude from 318300 N to 328200 N.

Seven sites were set up in 2000 for pilot validation work,

and 47 additional sites were set up in 2001. Four sites

that had been used in 2000 were no longer accessible,

and were dropped in 2001.

Validation sites varied by four site-level factors:

region, focal habitat, degree of isolation, and presence/

absence of surface water. First, sites were classified as

within (18 sites) or beyond (32 sites) the San Pedro River

riparian corridor. Thirty four of the validation sites were

dominated by cottonwood and 16 by mesquite. Cotton-

wood habitat was adjacent to mesquite, grassland, or

both. Mesquite habitat was adjacent to desert scrub, or

both cottonwood and desert scrub. Cottonwood sites

were classified as isolated if they were .100 m from the

primary riparian corridor of the San Pedro River,

Sonoita River, or the Cienega River. All cottonwood

sites on Fort Huachuca were considered isolated, since

they were all narrow drainages eventually discharging

into the San Pedro River. Mesquite sites were classified

as isolated if they were narrow strips of vegetation

occurring in washes (,50 m wide), and nonisolated if

they were part of the much wider secondary riparian

corridor immediately adjacent to the primary riparian
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corridor. If surface water was not present during any of

the visits to the site, sites were classified as surface water

absent; otherwise they were classified as surface water

present.

We developed habitat maps for the EAM and null

model using a Trimble GPS unit to record UTM

coordinates along edges between habitat types. The

perimeter of habitat types within validation sites was

grouped and differentially corrected in Pathfinder Office

(Trimble software) to obtain accuracy of 2–5 m.

Location data were brought into ArcView 3.2 for the

creation of habitat patch polygons.

At each validation site, point transect locations were

established and each point location was buffered to 60

m. To standardize survey area between predicted and

observed abundance estimates, the buffered polygon was

used as the outer limit of predicted abundance for both

models.

Observed abundance

The number of bird survey points at each site varied

positively with habitat patch size. Of the 50 sites, five

sites had two point transect locations and one site had 1,

while the remaining 44 sites contained three point

transect locations. There were 95 plots in 34 cottonwood

sites, and 47 plots in 16 mesquite sites, for a total of 142

plots. Each site was visited between three and six times

for ;450 surveys across the 2000–2001 field seasons.

The order in which sites were visited was varied

systematically in order to avoid bias related to time of

day.

Distance sampling (see Methods: Predicted abun-

dance: Distance sampling analysis) was used to obtain

an abundance estimate for each species in each of the 50

sites. The area of each validation site, calculated within

ArcView 3.2, was used to obtain abundance estimates

per site. To obtain an observed per-site abundance

estimate to compare with the predicted abundance for

each site, data were combined for a given species at a

given site for all visits within and between years. Two

different observers conducted surveys during the two

years, with a single observer (L. A. Brand) doing 92% of

the validation surveys in both years. Sufficient detec-

tions were obtained to enable estimation of abundance

FIG. 1. Edge response functions (density vs. distance from edge) for Abert’s Towhee (A) in mesquite adjacent to desert scrub
using simple linear regression, and (B) in grassland adjacent to cottonwood using piecewise linear regression.
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of 20 species by validation site. All data were analyzed in

the program Distance 3.5 (Thomas et al. 1998).

Akaike information criterion (AIC) model selection
(Burnham and Anderson 2002) was used to select the

best detection function to estimate per-site abundance
for each of the 20 species. Eight candidate detection

functions were assessed, including detection functions

allowed to vary by habitat type, riparian corridor width,
and adjacent habitat type. In addition, a global

detection function was estimated based on pooling
across sites. We selected the best model via AIC with a

minimum of 50 detections. All candidate detection
functions were assessed for each species (Buckland et

al. 2001). Due to relatively small sample sizes for the
species-specific analyses, only two detection functions

were selected using AIC: focal habitat (separate

detections for cottonwood vs. mesquite) or global
(pooling across all sites).

Comparison of observed and predicted

Model validation.—We evaluated the relative predic-
tive performance of the EAM and null model from the

validation study sites for 20 species with adequate data.
In order to assess the relative performance of the models,

we compared prediction error between observed and

predicted abundance using both models for each of the

20 species. Mean absolute prediction error (henceforth,

prediction error, PE) was calculated separately for each
species for each of the two models (EAM and null) as

PE ¼

X50

i¼1

jEðobsiÞ � EðprediÞj

50
ð1Þ

where E equals the expected value and i indexes the
validation site.

To obtain an estimate of the expected value of the

observed abundance for each validation site, we
regressed observed abundance (dependent variable) onto

predicted abundance (independent variable) for each

species in each validation site separately for each model.
The fitted line from the linear regression model

represents the expected value of observed abundance
for different levels of the predicted abundance (i.e.,

different validation sites). We call these lines the

regression of observed vs. predicted (illustrated without
x marked lines, Fig. 3). The rationale for this approach

is that the regression estimates the expected value of

observed abundance, at a given predicted abundance,
and smoothes the inherent variability in the observed

data. Much of this variability is believed to be related to
sampling variation and should not be attributed to

prediction error. Finally, we compare the observed vs.

predicted line to the line of perfect fit (y intercept¼0 and
slope ¼ 1 illustrated with x marked lines; Fig. 3).

Prediction error is now estimated, separately for each
model, in terms of the distance between the observed vs.

predicted regression line and the line of perfect fit. The

difference between the observed vs. predicted line and
the line of perfect fit provides a clear comparison

between the prediction error of the EAM relative to the
prediction error of the null model.

Model comparisons were based on 10 000 bootstrap

replicates of the 50 validation sites with replacement to
estimate the distribution of prediction error for the

EAM and null model, and the difference in prediction

error between the models (Efron and Tibshirani 1993). It
was necessary to use the bootstrap since the independ-

ence assumption of a paired t test was not met. The
bootstrap process computed the mean absolute value of

the difference between the observed vs. predicted line

and the line of perfect fit (analogous to the residuals)
across the 50 validation sites. We then calculated

bootstrap 95% confidence intervals and P values to test
the hypothesis that the prediction error of the EAM is

less than the prediction error of the null model (Efron

and Tibshirani 1993).
Model calibration.—When attempting to predict

abundance in locations (validation sites) different from

those used to parameterize the model (San Pedro River),
substantial prediction error may result from many

sources of spatial or temporal variability. To assess
whether calibration would improve prediction of abso-

lute abundance in novel locations, we calculated EAM

prediction error across all validation sites for each

FIG. 2. The three EAM input parameters: edge density,
interior density, and Dmax (representing the maximum distance
of edge influence), as derived from (A) piecewise linear
regression and (B) simple linear regression.
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species. Additionally, we used subsets of the 50

validation sites to investigate whether inclusion of four

site-level variables (i.e., isolation, presence of water,

region, and focal habitat) in a calibration improves the

ability of the EAM to predict abundance in validation

sites that are categorically different from those in which

the models were parameterized.

Calibration can be achieved by regressing the

predicted abundance on the observed abundance using

a basic regression model:

ŷ ¼ b0 þ b1 3 EAMabun ð2Þ

where y ¼ observed abundance, EAMabun ¼ predicted

EAM abundance, and b1¼ slope coefficient. Regression

of observed vs. predicted abundance enables empirical

estimation of the slope and intercept parameters to

adjust or correct abundance predictions for novel

locations. Additional covariates (e.g., continuous cova-

riates such as canopy height or other variables easily

estimated from remotely sensed data) could be used, but

we restricted our analyses to binary site-level factors in

the following ANCOVA model:

ŷ ¼ b0 þ b1 3 EAMabun þ b2 3 habitat ð3Þ

where y ¼ observed abundance, EAMabun ¼ predicted

EAM abundance, b2¼ site factor coefficient, and habitat

¼ focal habitat. The additional site-level factors in the

ANCOVA model shift the intercept but do not change

the slope. For example, incorporation of focal habitat as

an additional covariate in a model calibration enables

adjustment for different average abundance associated

with the new location depending on vegetation type. To

evaluate improvement we calculated the coefficient of

determination (R2 values) and model P values by species

as a function of EAM predictions alone, EAM

predictions separately by site-level variable, and EAM

predictions with all four site-level variables.

RESULTS

Model validation

Based on all validation sites, the Effective Area Model

(EAM) and null model had significant (P , 0.05)
differences in mean absolute prediction error for 12 of

20 species (Fig. 4, Table 1). The EAM was not always

the best model. For example, for the Yellow-breasted

Chat the EAM outperformed the null model, but for the
Black-throated Sparrow the null model outperformed

the EAM (Fig. 4). Of the 12 species for which it was

possible to discern a significant difference between
models, the EAM performed better than the null model

for 10 species (Table 1).

When comparing models separately for subsets of the

site-level variables, the EAM generally outperformed the

null model across species and validation sites. However,
three of the four site-level variables affected the relative

performance of the models. The EAM showed better

prediction relative to the null model in cottonwood focal
habitat, isolated patches, and in sites where water was

absent (Table 2). There was no difference based on

region in terms of the percentage of species for which the

EAM outperformed the null model (Table 2). The EAM
most outperformed the null model in isolated patches

and in patches without water; 91% of the species were

better predicted by the EAM when it was possible to
discern a difference between the two approaches (Table

2). No difference in prediction error occurred between

the two models for eight of 20 species when considering

all validation sites, and for 9–15 of 20 species when

FIG. 3. Yellow Warbler observed abundance vs. EAM predicted abundance for each validation site showing the calibrated
observed vs. predicted regression line (without x marks), and the line of perfect fit (with x marks).
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considering subsets of validation sites, though samples

sizes were quite low for some subsets (Tables 1, 2).

Model calibration

When considering all 50 validation sites, the 95%

confidence interval of EAM prediction error did not

overlap zero for any of the species (Fig. 5). In particular,

five species (Cassin’s Kingbird, Lucy’s Warbler, Brown-

crested Flycatcher, Song Sparrow, and Yellow Warbler)

showed substantial prediction error (Fig. 5). These

results indicate that calibration was needed to improve

the ability to predict abundance for common desert

riparian bird species in novel locations.

When subsets of validation sites were selected using

site-level variables, nine of 20 species showed a

significant (P , 0.05) change in EAM prediction error

as a function of one or more of the four site-level

covariates (focal habitat, isolation, presence of water,

and region). Prediction error was reduced in both

isolated (vs. contiguous) sites and sites where water

was absent (vs. present) for five of the 20 species

(Common Yellowthroat, Song Sparrow, Summer Tan-

ager, Yellow-breasted Chat, and Yellow Warbler; Fig.

6). Prediction error was lower in mesquite (vs. cotton-

wood) focal habitat for six species (Brown-crested

Flycatcher, Cassin’s Kingbird, Lesser Goldfinch, Song

Sparrow, Summer Tanager, and Yellow Warbler; Fig. 6)

and lower in cottonwood for only Abert’s Towhee. Only

Song Sparrow had increased prediction error on sites

away from the San Pedro River. These results indicate

that absolute abundance predictions in novel locations

may be improved by incorporating additional site-level

FIG. 4. Black-throated Sparrow and Yellow-breasted Chat observed vs. predicted abundance regression line without x marks
and line of perfect fit with x marks, for both the EAM and the null model.
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variables, and that the EAM predictions were robust

across regions for the majority of species.

Of the six models examined for improvement in

prediction by the inclusion of covariates, we found at

least one significant model for 17 of the 20 species

examined, with R2 values .25% for 12 species, .48%

for six species, and .60% for four species (Table 3). The

EAM by itself explained a significant amount of

variability in observed abundance for 11 of 20 species,

with R2 values .23% for eight species, and .45% for

three species (Table 3). At least one additional site-level

variable significantly improved predictions for the

majority of species examined (Table 3).

DISCUSSION

Abundance is strongly related with distance from

habitat edge for many bird species due to abiotic and

biotic factors operating at edges (Brand 2004, Ries et al.

2004). Given the strong relationships between abun-

dance, habitat type, and distance from edge, it is

essential to incorporate these factors into predictive

models (Sisk et al. 1997, 2002, Ries et al. 2004). Despite

the large amount of effort given to the study of bird

response to habitat edges (e.g., Brand 2004, Battin 2004,

Fletcher 2005), the Effective Area Model (EAM) is the

only tool currently available that projects information

from edge response studies to population level responses

at the landscape scale (Ries et al. 2004). Quantitative

predictions that incorporate the spatial arrangement of

vegetation types in the landscape coupled with the

responses of a species to edges represent an important

tool for conservation planning.

Comparison of the performance of the EAM with the

null model is a means to empirically assess the

importance of incorporating edge response and patch

context for predicting avian abundance. Comparing the

relative predictive performance of the EAM to a null

model that ignores edge effects, we found the EAM to

have lower mean absolute prediction error than the null

model. We found this to be true for all validation sites as

well as subsets of validation sites. Overall, it appears

that including information on the response of bird to

TABLE 2. Number of species for which the EAM or null model
performed better in terms of the difference in prediction error
(as in Table 1).

Site factors N
EAM
better

Null
model
better %�

All sites 50 10 2 83.3
Isolation

Contiguous 36 6 4 60.0
Isolated 14 10 1 90.9

Water

Present 13 6 4 60.0
Absent 37 10 1 90.9

Focal habitat

Cottonwood/deciduous 34 11 3 78.6
Mesquite 16 4 2 66.7

Region

San Pedro River 18 4 1 80.0
Not San Pedro 32 8 2 80.0

Notes: Results are presented for all validation sites, as well as
for a subset of sites based on four site-level factors (isolation,
presence of water, focal habitat, and region).

� Percentage of species for which EAM gave the better
prediction.

TABLE 1. Prediction error (PE) by species for null model, Effective Area Model (EAM), and difference between null and EAM
models (DPE).

Species

PE DPE

P Best model�Null EAM Null � EAM 95% CL

ABTO 0.457 0.463 �0.005 �0.466, 0.266 0.456 either
ATFL 0.404 0.462 �0.058 �0.214, 0.086 0.187 either
BCFL 1.776 1.646 0.130 0.105, 0.151 0.001 EAM
BEWR 0.738 0.591 0.147 �0.103, 0.224 0.103 either
BHCO 1.021 0.852 0.169 0.079, 0.257 0.005 EAM
BLGR 0.586 0.459 0.126 0.085, 0.163 0.000 EAM
BTSP 0.197 0.425 �0.228 �0.321, �0.002 0.022 null
BUOR 0.757 0.529 0.228 0.072, 0.272 0.007 EAM
CAKI 4.134 3.979 0.155 0.100, 0.221 0.000 EAM
COYE 1.188 1.123 0.064 �0.029, 0.164 0.089 either
GIWO 0.759 0.743 0.016 �0.127, 0.159 0.385 either
HOFI 0.777 0.568 0.210 0.158, 0.252 0.000 EAM
LEGO 1.127 1.146 �0.019 �0.098, 0.059 0.309 either
LUWA 3.490 2.152 1.339 1.013, 1.693 0.000 EAM
MODO 0.622 0.614 0.008 �0.013, 0.030 0.234 either
SOSP 2.397 2.480 �0.083 �0.409, 0.291 0.299 either
SUTA 0.177 0.650 �0.473 �0.530, �0.134 0.005 null
WWDO 0.566 0.467 0.099 0.069, 0.131 0.000 EAM
YBCH 1.312 0.568 0.743 �0.068, 0.989 0.030 EAM
YWAR 1.752 1.601 0.151 �0.031, 0.379 0.053 EAM

Note: Species codes are as in Table 3.
� Best model associated with DPE.
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habitat edges, as well as to habitat composition,

provides more accurate predictions of abundance in

novel locations.

The EAM outperformed the null model but not

consistently. For example, the null model predicted

abundance of Black-throated Sparrow and Summer

Tanager more accurately than the EAM when consid-

ering all validation sites. The reasons are unclear since

both species showed a significant edge response in three

of the eight edge types sampled in the validation sites

(Brand 2004). One explanation is that some species may

not consistently demonstrate edge responses across

regions. Currently it is unknown why, and to what

extent, edge responses change for a given species from

one region to another with the same habitat types (see

Ries et al. 2004). Additionally, situations in which the

models don’t predict well may be due to limited power

to detect subtle responses, lack of model generality, and

failure to include key predictor variables.

No difference between the predictive performance of

the two models for certain species could be due to lack

of importance of edge effect for those species. All species

are expected to show neutral responses at some edge

types (Ries et al. 2004). For the eight species for which

both models were equally valid, two (Bewick’s Wren,

Song Sparrow) had neutral edge responses in seven of

the eight edge types, three (Gila Woodpecker, Lesser

Goldfinch, and Mourning Dove) had neutral edge

responses in six of the eight edge types, two (Common

Yellowthroat, Ash-throated Flycatcher) had neutral

edge responses in five of eight edge types, and one

species (Abert’s Towhee) had four of eight neutral edge

responses (Brand 2004). Given the relatively high

number of species for which it was not possible to

discern a difference between the models for subsets of

validation sites, it is also likely that lack of statistical

power made it impossible to predict all but pronounced

edge effects.

Even though the EAM reduced predicted error in

novel locations when compared with the null model,

FIG. 5. EAM absolute prediction error (no.
birds; defined in Eq. 1), means with 95% CI, for
20 species from 50 validation sites. Species codes
are as in Table 3.

FIG. 6. EAM absolute prediction error (no. birds; defined
in Eq. 1), means with 95% CI, for Cassin’s Kingbird, Yellow-
breasted Chat, and Song Sparrow as a function of four site-level
variables: focal habitat, isolation, presence of water, and region.
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prediction error was observed for all 20 species, an

outcome commonly found in other studies (Rotenberry

1986, Morrison et al. 1987, Wiens 2002, Whittingham et

al. 2003). Many sources of environmental variability

may contribute to prediction error. The most obvious of

these arises from the fundamental differences between

San Pedro River sites used to parameterize the model

and validation sites used to test the model. Regional

differences between model parameterization and vali-

dation sites included differences in the landscape

surrounding the riparian corridor, with the San Pedro

riparian corridor surrounded by Chihuahuan or Sonor-

an desert and validation sites on the Sonoita Creek

Preserve, Fort Huachuca, and Empire Cienega sur-

rounded by high desert grassland. In addition, inter-

annual variability may have been a source of prediction

error in that parameterization and validation sampling

occurred during different years (1998–2001 and 2000–

2001 field seasons, respectively). Year-to-year variation

in regional abundance has been found to occur in many

other breeding bird studies (Noon et al. 1985, Villard et

al. 1995, Wesolowski and Tomialojc 1997, Gutzwiller

and Barrow 2001) and is likely to have affected

prediction errors. Interannual or regional differences

may have affected the species pool or species relative

abundances, which in turn could affect interspecific

interactions such as competition or predation. In

summary, there were many sources of potential varia-

bility that likely affected the magnitude of bias between

observed and predicted abundance.

In most cases, the accuracy of EAM predictions

improved with the inclusion of site-level variables. For

example, the relative performance of the EAM vs. null

model was greatly improved by the inclusion of

information distinguishing isolated dry sites from

contiguous wet sites (91% vs. 60%, EAM prediction

TABLE 3. Coefficient of determination (r2 3 100) representing percentage of variability explained in observed abundance, by
species, as a function of EAM prediction alone and EAM prediction plus site-level variables for calibrated models.

Species code Species name EAM
EAM þ

focal habitat
EAM þ
isolation

EAM þ
region

EAM þ
water

EAM þ
all variables

ABTO Abert’s Towhee
Pipilo aberti

0.7 6.5 2.9 20.2** 1.0 25.6*

ATFL Ash-throated Flycatcher
Myiarchus cinerascens

3.2 3.9 15.1* 4.7 10.9 16.4

BCFL Brown-crested Flycatcher
Myiarchus tyrannulus

1.0 14.1* 4.5 4.2 4.1 16.8

BEWR Bewick’s Wren
Thryomanes bewickii

23.3*** 27.2*** 27.1*** 24.4** 25.4** 34.7**

BHCO Brown-headed Cowbird
Molothrus ater

1.0 3.0 1.4 1.4 2.4 10.3

BLGR Blue Grosbeak
Guiraca caerulea

9.8* 9.8 10.3 9.8 10.7 13.8

BTSP Black-throated Sparrow
Amphispiza bilineata

58.3*** 61.4*** 58.5*** 59.3*** 58.3*** 61.7***

BUOR Bullock’s Oriole
Icterus bullockii

0.0 4.3 8.0 0.1 1.0 13.7

CAKI Cassin’s Kingbird
Tyrannus vociferans

26.1*** 35.4*** 26.1*** 26.3*** 26.1*** 37.0***

COYE Common Yellowthroat
Geothlypis trichas

5.7 9.9 32.2*** 8.5 40.8*** 48.5***

GIWO Gila Woodpecker
Melanerpes uropygialis

28.1*** 28.1*** 28.2*** 28.2*** 28.5*** 29.1**

HOFI House Finch
Carpodacus mexicanus

0.4 3.7 0.6 8.4 4.5 10.9

LEGO Lesser Goldfinch
Carduelis psaltria

27.5*** 31.2*** 28.1*** 28.2*** 27.8*** 32.4**

LUWA Lucy’s Warbler
Vermivora luciae

7.2* 25.4** 7.3 13.9* 9.4 28.8**

MODO Mourning Dove
Zenaida macroura

9.8* 9.8 11.3 11.9* 13.8* 16.2

SOSP Song Sparrow
Melospiza melodia

45.9*** 52.0*** 59.6*** 46.2*** 61.2*** 67.5***

SUTA Summer Tanager
Piranga rubra

0.0 36.8*** 33.4*** 11.1 34.3*** 49.5***

WWDO White-winged Dove
Zenaida asiatica

5.0 5.1 5.4 7.6 12.5* 19.4

YBCH Yellow-breasted Chat
Icteria virens

29.9*** 30.0*** 64.7*** 31.5*** 67.8*** 77.6***

YWAR Yellow Warbler
Dendroica petechia

63.6*** 66.4*** 72.0*** 63.6*** 68.2*** 73.1***

Mean across species 17.3 23.2 24.8 20.5 25.4 34.2

*P , 0.05; **P , 0.01; ***P , 0.001.
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better than the null model). The significance of local

covariates suggests that edge response may change due

to subtle differences in habitat characteristics and

resources, even if gross habitat composition remains

constant.

Other attempts to predict absolute abundance in

novel locations or at different time periods have been

largely unsuccessful (Rotenberry 1986, Morrison et al.

1987, Wiens 2002, Whittingham et al. 2003), perhaps

due to inherent variability between time frames or

locations. For example, Morrison et al. (1987) found

that predicted abundances at the same locations at a

different time underestimated observed abundances by

25–50%. Rotenberry (1986) and Wiens (2002) attempted

to use habitat models that had explained up to 70% of

the variation in observed abundance to predict abun-

dance in new locations and time frames and found these

models did not predict well. Whittingham et al. (2003)

applied predictive habitat models to new locations and

found that models developed in one region performed

poorly when applied in other regions. However,

Whittingham et al. (2003) also noted that observed

Skylark territories were significantly correlated with

predicted Skylark territories, even if they did not predict

a 1:1 relationship. From this result, they cautioned that

models developed in one place cannot be used to make

absolute abundance predictions in other regions. How-

ever, they apparently did not recognize that estimating

slope and intercept from a regression of observed vs.

predicted abundance, as done in this paper, enables

empirical estimation and adjustment for prediction error

that can be used to calibrate models to new locations.

Given the strong causal relationships between animal

abundance and a large number of environmental factors

(Rotenberry 1986, Lowe and Bolger 2002), it is unlikely

that a model based on habitat composition and edge

response alone can make highly accurate predictions.

However, it is encouraging that easily acquired site-level

covariates helped explain components of variability in

bird abundance and reduced EAM prediction error.

Environmental factors that differently affect bird

abundance between parameterization and validation

sites likely contributed to the observed prediction error

for many species. In addition to helping explain EAM

prediction error, the four site-level covariates improved

abundance predictions after model calibration. Ob-

served abundance explained by calibrated models with

and without site-level factors (R2 values .25% for 12

species and .48% for six species) was quite good

compared with other studies (Morrison et al. 1987).

Thus, use of the site-level habitat covariates, along with

calibrated EAM predictions, significantly improved

prediction success.

Increased accuracy of abundance predictions using

the calibration framework presented here requires close

attention to model parameterization and calibration. To

predict abundance in novel locations requires that a

model such as the EAM be parameterized in terms of

absolute (not relative) abundance. Given the large

amount of theoretical development of abundance

estimation methods, edge response functions are best
parameterized using distance sampling (Buckland et al.

2001) or mark–recapture methods (Seber 1982, White et

al. 1982) that enable absolute abundance estimation by

adjusting for detection probabilities that are heteroge-
neous and ,1.0. Additionally, in order to calibrate

predictive models to local site conditions, the target

population must be clearly identified. If the EAM or

other models are used to predict abundance in the
calibration sample, then empirical estimation of the

slope and intercept of the regression between observed

vs. predicted abundance (calibration Eqs. 2 and 3) can
be used to predict absolute abundance, adjusted for

known site-level factors as well as for interannual,

regional, or other unmeasured sources of variation.
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