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We examined methylmercury (MeHg) bioavailability in four of the most predominant wetland habitats in
California's Central Valley agricultural region during the spring and summer: white rice, wild rice, permanent
wetlands, and shallowly-flooded fallow fields. We sampled MeHg and total mercury (THg) concentrations in
two aquatic macroinvertebrate taxa at the inlets, centers, and outlets of four replicated wetland habitats
(8 wetlands total) during two time periods bounding the rice growing season and corresponding to flood-up
and pre-harvest (96 total samples). In general, THg concentrations (mean±standard error) in Notonectidae
(Notonecta, back swimmers; 1.18±0.08µg g−1 dry weight [dw]) were higher than in Corixidae (Corisella,
water boatmen; 0.89±0.06µgg−1dw, MeHg: 0.74±0.05µg g−1dw). MeHg concentrations were correlated
with THg concentrations in Corixidae (R2=0.80) and 88% of THg was in the MeHg form. Wetland habitat
type had an important influence on THg concentrations in aquatic invertebrates, but this effect depended
on the sampling time period and taxa. In particular, THg concentrations in Notonectidae, but not Corixidae,
were higher in permanent wetlands than in white rice, wild rice, or shallowly-flooded fallow fields. THg
concentrations in Notonectidae were higher at the end of the rice growing season than near the time of
flood-up, whereas THg concentrations in Corixidae did not differ between time periods. The effect of wetland
habitat type was more prevalent near the end of the rice growing season, when Notonectidae THg
concentrations were highest in permanent wetlands. Additionally, invertebrate THg concentrations were
higher at water outlets than at inlets of wetlands. Our results indicate that although invertebrate THg
concentrations increased from the time of flood-up to draw-down of wetlands, temporarily flooded habitats
such as white rice, wild rice, and shallowly-flooded fallow fields did not have higher THg or MeHg
concentrations in invertebrates than permanent wetlands.
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1. Introduction

Recognition of the value of wetlands has led to large-scale efforts
worldwide to conserve and restore wetland habitats (Mitsch, 2005).
The Central Valley of California has lost over 90% of its historical
wetlands to agriculture and urban development (US Fish andWildlife
Service, 1978; Gilmer et al., 1982; Frayer et al., 1989; Dahl, 1990),
and large-scale ecosystem restoration of the Central Valley watershed
is being implemented with some uncertainties as to the structure
of the restored wetland mosaic (http://www.delta.dfg.ca.gov/erp/
reports_docs.asp; Moyle et al., 2007; Moyle and Bennett, 2008).
Ephemeral wetlands, in particular, are important foraging habitats for
waterbirds, because they tend to be highly productive and yield large
quantities of seeds and aquatic invertebrates (Krapu and Reinecke,
1992; Anderson and Smith, 2000; Taft et al., 2002; Taft and Haig, 2005).
Additionally, ephemerally flooded wetlands, such as river floodplains,
are thought to be beneficial for thegrowthand survival offishes (Bayley,
1995; Sommer et al., 2001; Jeffres et al., 2008). However, ephemeral
wetland habitats also can bemore conducive tomethylmercury (MeHg)
production and bioaccumulation (Hall et al., 1998; Snodgrass et al.,
2000;Ullrichet al., 2001),which is the formofmercury (Hg) that ismost
toxic and biomagnifies up aquatic food chains (Wiener et al., 2003a).
California has a legacy of inorganic Hg contamination due to historic Hg
mining and gold extraction (Davis et al., 2003;Wiener et al., 2003b), and
it is not known whether some wetland habitat types enhance MeHg
bioaccumulation more than others.

Among the most abundant ephemeral wetland habitat types in the
California Central Valley are agricultural fields, particularly for rice
production. Rice fields are shallowly flooded (<30 cm) during the
summer for rice growth, and then rice fields often are flooded again
post-harvest in fall and winter to speed rice straw decomposition
(Bird et al., 2000). Because only 121,000 ha of natural wetlands
remain in California after historic losses (US Fish andWildlife Service,
1978; Gilmer et al., 1982; Frayer et al., 1989; Dahl, 1990), flooded rice
fields are significant both numerically, totaling approximately
216,100ha (U.S. Department of Agriculture, National Agricultural
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Statistics Service, 2007), and ecologically, providing waterbird
foraging habitat (Elphick and Oring, 1998; Elphick, 2000). Although
agricultural wetlands are among the most abundant wetland habitats
in California's Central Valley, bioaccumulation of MeHg in rice fields
has not been assessed.

Herein, we examined Hg bioaccumulation within agricultural,
seasonal, and permanent wetland habitats common to California's
Central Valley during the summer rice growing season. We con-
ducted our study within the Yolo Bypass because it has the highest
average annual surface water MeHg concentration of the seven sub-
watersheds within the Sacramento–San Joaquin River Delta (Wood
et al., 2008). Currently, the California Central Valley Regional Water
Quality Control Board is developing a MeHg Total Maximum Daily
Load (TMDL) for the Sacramento–San Joaquin River Delta, and the
Yolo Bypass may require an 80% reduction in MeHg loadings to meet
TMDL goals (Wood et al., 2008). These high MeHg concentrations in
the Yolo Bypass may be due in large part to the predominance of
wetlands within this sub-watershed (Wood et al., 2008), because
wetlands are known to have higher rates of MeHg production than
other aquatic habitats (Krabbenhoft et al., 1995; Marvin-DiPasquale
et al., 2003; Hall et al., 2008).

Our goal was to evaluate how different wetland management
practices influenced MeHg bioaccumulation. We used aquatic inver-
tebrates as our indicator of Hg bioaccumulation, because inverte-
brates are important food items in wetlands managed for waterbirds
(Euliss and Jarvis, 1991; de Szalay et al., 2003) and they are ubiquitous
throughout the study wetlands. We examined Hg concentrations in
two of the most common invertebrates found in each of the four
wetland habitat types: one each from the families Corixidae (Corisella,
water boatmen) and Notonectidae (Notonecta, back swimmers)
within the Order Hemiptera. These two invertebrates are known to
occupy different trophic positions; Notonecta are mostly predatory
whereas Corisella are considered omnivorous and commonly con-
sume detritus and plant material (Menke, 1979; Polhemus, 1996;
Schwiebert, 2007). Thus, we predicted higher Hg concentrations in
Notonecta than in Corisella. Specifically, our objectives were to
determine if invertebrate Hg concentrations (1) differed among
wetland habitat types, (2) changed during the rice growing season
from flood-up to harvest, (3) varied from water inlets to outlets, and
(4) differed between invertebrate taxa.

2. Materials and methods

2.1. Study site

We assessed MeHg bioaccumulation within wetlands at the Vic
Fazio Yolo Wildlife Area (38.33° N, 121.4° W) in summer 2007. The
Yolo Wildlife Area is located within the Yolo Bypass and is managed
by the California Department of Fish and Gamewith the primary goals
of restoring wetland habitat, encouraging agriculture, and maintain-
ing the function of the Yolo Bypass for flood control (D. Feliz,
California Department of Fish and Game, pers. comm.). The Yolo
Bypass is the largest floodplain in the Sacramento–San Joaquin River
Delta and provides flood protection as part of the Sacramento River
Flood Control Project. It is common for the Yolo Bypass to flood each
spring when Sacramento River waters are high due to spring runoff.
There are four predominant wetland management strategies during
the summer rice growing season: white rice (Oryza sativa), wild rice
(Zizania palustris), permanent wetlands, and shallowly-flooded fallow
fields. Both white rice and wild rice are grown extensively throughout
the Yolo Wildlife Area and represent the largest wetland area during
the late spring and summer. Additionally, former rice fields that are
rotated out of production and left fallow for a year are shallowly
flooded during the late summer (July–September) to provide foraging
habitat for migrating shorebirds. There also are several perennial
wetlands that are permanently flooded throughout the year. After the
summer rice growing season, both seasonal wetlands and agricultural
fields are flooded during the fall and winter to provide habitat for
wintering waterfowl and shorebirds.

2.2. Invertebrate sampling

We studiedMeHg bioaccumulation within two fields each of white
rice, wild rice, permanent wetlands, and shallowly-flooded fallow
fields. We sampled two taxa of aquatic macroinvertebrates at the
inlets, centers, and outlets of each of the 8 wetlands during two time
periods bounding the rice growing season and corresponding to
flood-up and pre-harvest (96 total samples). White rice fields were
initially flooded, then the water was discharged within two weeks for
weed control, and thereafter re-flooded; we conducted our first
sampling time period immediately after the fields were re-flooded for
rice production. Because fallow fields were managed for migrating
shorebirds, they were not initially flooded until late July. Our pre-
harvest invertebrate sampling time period occurred immediately
before the wild rice harvest in mid September. Thus, our flood-up
invertebrate sampling occurred from 25 June to 6 July and our pre-
harvest sampling occurred from 28 August to 19 September for all
habitats, with the exception that fallow fields were sampled at flood-
up on 30 July 2007.

We sampled aquatic invertebrates in the water column and
submerged vegetation using D-ring sweep nets with 0.5 mm mesh
(diurnal) and floating light traps (nocturnal). Light traps were
constructed as described by Marchetti and Moyle (2000), and were
set at night and retrieved at dawn the following morning. We also
used sweep nets at each site during trap deployment and retrieval to
increase the biomass of invertebrates captured. We transported
invertebrates from the field in fresh source water on wet ice and
stored them in the refrigerator for 24 h to allow the passage of
inorganic Hg present in their digestive tracts. We then identified and
sorted invertebrates with a dissecting microscope (10×) following
Merritt and Cummins (1996); genera were independently confirmed
by the R. M. Bohart Museum of Entomology, University of California,
Davis. We sampled invertebrates from each site until we reached a
biomass of >3 g wet weight each of Corixidae (Order Hemiptera,
Family Corixidae, Genus Corisella, water boatmen) and Notonectidae
(Order Hemiptera, Family Notonectidae, Genus Notonecta, back
swimmers).We stored invertebrates inWhirl-paks® (Nasco, Modesto,
California, U.S.A.) at −20 °C until Hg analysis.

2.3. Mercury determination

Prior to Hg analysis, invertebrates were dried at 60 °C for 24–48 h,
then ground and homogenized to a fine powder using a ceramic
mortar and pestle. Initially, an aliquot of each Corixidae sample was
analyzed for MeHg at Battelle Marine Sciences Laboratory (Sequim,
Washington, U.S.A.) using cold vapor atomic fluorescence following
EPA method 1630 (U. S. EPA, 2001). We then analyzed the remaining
aliquots of the same Corixidae samples and all the Notonectidae
samples for total mercury (THg) at the USGS Davis Field Station
Mercury Lab, on a Milestone DMA-80 Direct Mercury Analyzer
(Milestone Inc., Monroe, Connecticut, U.S.A.) following EPA method
7473 (U. S. EPA, 2000). For 11 invertebrate samples, we could not
analyze THg because we were unable to collect enough biomass for
both MeHg and THg analyses. Because MeHg and THg were highly
correlated (see Results), and the percent MeHg did not vary as a
function of THg levels (see Results), we used MeHg concentrations
and the average percent MeHg in Corixidae to estimate THg con-
centrations for those 11 Corixidae samples. Quality assurance
measures included analysis of two certified referencematerials (either
dogfish muscle tissue [DORM-2; National Research Council of Canada,
Ottawa, Canada], dogfish liver [DOLT-3; National Research Council of
Canada, Ottawa, Canada], or lobster hepatopancreas [TORT-2;National



Fig. 1. Corixidae (water boatmen) total mercury (THg) concentrations (µg g−1 dry
weight) were highly correlated with methylmercury (MeHg) concentrations within
California Central Valley wetlands.
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Research Council of Canada, Ottawa, Canada]), two system and
method blanks, two duplicates, one matrix spike, and one matrix
spike duplicate per batch. For THg, recoveries (± SE) averaged 106.3±
1.7% (N=9) and 101.1±1.7% (N=14) for certified reference
materials and calibration checks, respectively. Matrix spike recoveries
for THg averaged 98.3±1.3% (N=10), and absolute relative percent
difference for all duplicates andmatrix spike duplicates averaged7.5±
2.9%. For MeHg, recoveries averaged 91.20±3.8% (N=3) for cer-
tified reference materials. Matrix spike recoveries for MeHg averaged
97.3±1.8% (N=12), and absolute relative percent difference for all
duplicates andmatrix spike duplicates averaged 7.8±1.6%. We report
mean±standard error THg and MeHg concentrations on a dry weight
(dw) basis.

2.4. Statistical analysis

We tested whether THg and MeHg concentrations in invertebrates
differed among factors using backward elimination mixed effect
analysis of variance (ANOVA), with alpha >0.10 to remove inter-
actions using JMP® version 5.0 (SAS Institute, Cary, North Carolina,
U.S.A.). The global mixed model included wetland habitat type
(white rice, wild rice, permanent wetland, and fallow fields), site
(inlet, center, and outlet), time period (flood-up and pre-harvest),
taxa (Corixidae and Notonectidae; for THg model only) as fixed
effects, wetland replicate as a random effect, and all 2-way and 3-
way interactions of fixed effects. We found significant 2-way
interactions for taxa×time period, taxa×wetland type, and time
period×wetland type for the THg model, therefore we used
conditional F-tests (slices) to test the effects of wetland type, time
period, and taxa separately while accounting for all the other
variables in the model. We then used pairwise t-tests to make
multiple comparisons. We calculated the proportion of THg in
Corixidae that was in the form of MeHg by dividing the MeHg
concentration by the THg concentration. We used linear regression
to test whether MeHg concentrations were related to THg concen-
trations in Corixidae, and to test whether THg concentrations in
Corixidae were related to THg concentrations in Notonectidae.

3. Results

Across all wetland habitat types and sampling time periods, THg
concentrations were 0.89±0.06µg g−1dw in Corixidae (N=36) and
1.18±0.08µg g−1dw in Notonectidae (N=45). Notonectidae THg
concentrations were not correlated with Corixidae THg concentra-
tions (linear regression: N=31, R2=0.01, P=0.96) or Corixidae
MeHg concentrations (linear regression: N=43, R2=0.02, P=0.42)
collected at the same locations and time periods. MeHg concentra-
tions in Corixidae were 0.74±0.05µg g−1dw (N=46). Corixidae
MeHg concentrations were highly correlated with Corixidae THg
concentrations (linear regression: N=34, R2=0.80, P<0.0001;
Fig. 1). In addition, most of the THg in Corixidae was comprised
of MeHg (88.0±3.1%) and the proportion of Hg in the form of MeHg
was not correlated with THg concentrations (linear regression:
N=34, R2=0.01, P=0.99), indicating that the proportion of THg in
the MeHg form did not vary with THg concentrations.

The final model from our backward elimination mixed effect
ANOVA model for THg concentrations in invertebrates included
wetland type, site, time period, and taxa as fixed effects, wetland
replicate as a random effect, and taxa×time period, taxa×wetland
type, and time period×wetland type as 2-way interactions (ANOVA:
wetland type: F3,3.94=3.16, P=0.15; site: F2,71.88=3.84, P=0.03;
time period: F1,71.88=5.12, P=0.03; taxa: F1,71.88=29.36,
P<0.0001; time period×wetland type: F3,71.88=4.03, P=0.01;
taxa×wetland type: F3,71.88=10.37, P<0.0001; taxa×time period:
F1,71.88=15.83, P=0.001). We therefore used conditional F-tests to
further interpret the significant interactions to assess whether
invertebrate THg concentrations differed among wetlands, taxa, and
time periods.

3.1. Site

THg concentrations in invertebrates tended to increase from water
inlets (least squares mean±SE: 0.92±0.08µg g−1dw) and wetland
centers (1.01±0.08µg g−1dw) towater outlets (1.14±0.08µg g−1dw;
Fig. 2). In pairwise comparisons, THg concentrations in invertebrates at
the outletwere significantly higher than THg concentrations at the inlets
(difference: 0.21±0.08µg g−1dw; t2,71.89=2.76, P=0.01) and THg
concentrations at wetland centers did not differ from concentrations at
inlets (difference: 0.09±0.08µg g−1dw; t2,71.89=1.15, P=0.25) nor
outlets (difference: 0.12±0.08µg g−1dw; t2,71.86=1.61, P=0.11).

3.2. Taxa×Time

THg concentrations in Notonectidae increased from the time of
flood-up to pre-harvest (difference: 0.40±0.09µg g−1dw; F1,71.86=
18.14, P<0.0001), whereas THg concentrations in Corixidae did not
differ between time periods (difference: 0.11±0.09µg g−1dw;
F1,71.90=1.60, P=0.21; Fig. 3). Accordingly, THg concentrations in
Corixidae did not differ from Notonectidae during the flood-up time
period (difference: 0.09±0.10µg g−1dw; F1,71.90=0.94, P=0.33), but
Notonectidae were higher than Corixidae during the pre-harvest time
period (difference: 0.61±0.09µg g−1dw; F1,71.86=48.99, P<0.0001).

3.3. Wetland type×Time

THg concentrations in invertebrates, overall, increased from the
time of flood-up to pre-harvest in permanent wetlands (difference:
0.40±0.14µg g−1dw; F1,71.86=7.57, P=0.01) and wild rice (differ-
ence: 0.29±0.13µg g−1dw; F1,71.95=5.19, P=0.03), but not white
rice (difference: 0.10±0.12µg g−1dw; F1,71.86=0.62, P=0.43) or



Fig. 3. Total mercury (THg) concentrations (mean±SE; µg g−1 dry weight) in
(A) Corixidae (water boatmen) and (B) Notonectidae (back swimmers) among
wetland habitat types during time periods corresponding to the flood-up (open) and
pre-harvest (solid) of rice in California's Central Valley.

Fig. 2. Total mercury (THg) concentrations (mean±SE; µg g−1 dry weight) in
(A) Corixidae (water boatmen) and (B) Notonectidae (back swimmers) at the water
inlets (open), centers (shaded), and outlets (solid) of white rice, wild rice, permanent
wetland, and shallowly-flooded fallow fields in California's Central Valley.
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shallowly-flooded fallow fields (difference: 0.20±0.12µg g−1dw;
F1,71.86=2.54, P=0.12; Fig. 3). THg concentrations in invertebrates
did not significantly differ betweenwetland habitats within the flood-
up time period (F3,6.64=3.14, P=0.10; differences: permanent
wetland vs white rice: 0.21±0.21µg g−1dw; permanent wetland
vs wild rice: 0.48±0.21µg g−1dw; fallow vs permanent wetland:
0.09±0.21µg g−1dw; fallow vs white rice: 0.29±0.20µg g−1dw;
fallowvswild rice: 0.57±0.20µg g−1dw;white ricevswild rice: 0.27±
0.20µg g−1dw) or pre-harvest time period (F3,5.78=3.78, P=0.08;
differences: permanent wetland vs white rice: 0.51±0.20µg g−1dw;
permanent wetland vs wild rice: 0.59±0.20µg g−1dw; permanent
wetland vs fallow: 0.50±0.20µg g−1dw; fallow vs white rice: 0.01±
0.20µg g−1dw; fallowvswild rice: 0.09±0.20µg g−1dw;white rice vs
wild rice: 0.08±0.20µg g−1dw).
3.4. Wetland type×Taxa

THg concentrations differed among wetland habitats for Noto-
nectidae (F3,6.51=7.97, P=0.01). Notonectidae THg concentrations
were higher in permanent wetlands than in wild rice (difference:
1.01±0.21µg g−1dw; t3,6.51=4.81, P=0.002), white rice (difference:
0.72±0.21µg g−1dw; t3,6.51=3.44, P=0.01), and fallow fields (differ-
ence: 0.67±0.21µg g−1dw; t3,6.51=3.19, P=0.01), but there were no
differences between white rice and wild rice (difference: 0.29±
0.20µg g−1dw; t3,6.51=1.47, P=0.19), white rice and fallow fields
(difference: 0.05±0.20µg g−1dw; t3,6.51=0.26, P=0.80), or wild rice
and fallow fields (difference: 0.34±0.20µg g−1dw; t3,6.51=1.73,
P=0.14; Figs. 2 and 3). Corixidae THg concentrations did not differ
between wetland habitats (F3,5.89=0.99, P=0.46; differences:
white rice vs permanent wetland: 0.01±0.20µg g−1dw; perma-
nent wetland vs wild rice: 0.06±0.20µg g−1dw; fallow vs perma-
nent wetland: 0.25±0.20µg g−1dw; fallow vs white rice: 0.24±
0.20µg g−1dw; fallow vs wild rice: 0.31±0.20µg g−1dw; white
rice vs wild rice: 0.07±0.20µg g−1dw). THg concentrations in
Notonectidae were higher than Corixidae in permanent wetlands
(difference: 1.00±0.14µg g−1dw; F1,71.86=48.39, P<0.0001) and
white rice (difference: 0.27±0.12µg g−1dw; F1,71.86=4.84, P=0.03),
but THg concentrations in Notonectidae and Corixidae were similar
in wild rice (difference: 0.05±0.13µg g−1dw; F1,71.95=0.16, P=0.69)
and fallow fields (difference: 0.08±0.12µg g−1dw; F1,71.86=0.39,
P=0.53).
3.5. MeHg in Corixidae

Because we used THg concentrations in our main model, we
repeated the backward elimination ANOVA model using only the
MeHg data in Corixidae and there were no significant interactions.
Wetland habitat type, site, and time period were not significant
factors influencing MeHg concentrations in Corixidae (ANOVA:
wetland type: F3,4=0.61, P=0.64; site: F2,37=1.48, P=0.24; time
period: F1,37=1.17, P=0.29; Fig. 4), although Corixidae MeHg
concentrations in permanent wetlands and shallowly-flooded fallow
fields tended to be elevated (differences: fallow vs white rice: 0.35±
0.32µg g−1dw; fallow vs wild rice: 0.35±0.32µg g−1dw; perma-
nent wetland vs white rice: 0.24±0.32µg g−1dw; permanent
wetland vs wild rice: 0.24±0.32µg g−1dw; fallow vs permanent



Fig. 4. Methylmercury (MeHg) concentrations (mean±SE; µg g−1 dry weight) in
Corixidae (water boatmen) within white rice, wild rice, permanent wetland, and
shallowly-flooded fallow fields in California's Central Valley.
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wetland: 0.12±0.32µg g−1dw; wild rice vs white rice: 0.01±
0.32µg g−1dw).

4. Discussion

The YoloWildlife Area, like many other state and federal refuges in
California's Central Valley, is primarily managed as waterfowl and
shorebird habitat. Therefore, wetlands are typically managed using
shallow and intermittent flooding because seasonal wetlands typi-
cally have greater invertebrate abundance than permanent wetlands
with longer hydroperiods (Neckles et al., 1990). In particular, reverse-
cycle seasonal wetlands are intermittently flooded during the spring
and summer to increase invertebrate production for breeding ducks
(Neckles et al., 1990; de Szalay et al., 2003), which switch from a diet
primarily of seeds to that of mainly invertebrates in order to attain the
required protein for egg formation (reviews by Alisauskas and
Ankney, 1992; Krapu and Reinecke, 1992), and ducklings, which
require invertebrate protein for rapid growth (review by Sedinger,
1992). Unfortunately, periodic wetting and drying of wetland habitats
often is associated with increased MeHg production and concentra-
tions in biota (Hall et al., 1998; Snodgrass et al., 2000; Ullrich et al.,
2001).

We found that wetland habitat type had an important influence on
THg concentrations in invertebrates, but this effect depended on the
sampling time period and taxa. In particular, temporarily flooded
habitats did not have higher THg or MeHg concentrations in
invertebrates than permanent wetlands. Instead, THg concentrations
in Notonectidae were higher in permanent wetlands than in white
rice, wild rice, or shallowly-flooded fallow fields, whereas there was
no difference amongwetland types for THg orMeHg concentrations in
Corixidae. THg concentrations in Notonectidae, but not Corixidae,
increased from the time of flood-up to draw-down of wetlands. The
effect of habitat was more prevalent at the end of the rice growing
season, when Notonectidae THg concentrations were highest in
permanent wetlands. Similarly, THg concentrations in amphipods
(Crangonyctidae) were highest in permanent wetlands compared to
intermittently flooded sites in the Okefenokee Swamp in Georgia
(George and Batzer, 2008).

Importantly, our results are in contrast to a companion study we
conducted simultaneously in which we used both caged fish (western
mosquitofish, Gambusia affinis) and wild fish (western mosquitofish
and Mississippi silversides, Menidia audens) to assess MeHg bioaccu-
mulation inwetlandfishes. In that study, we found strong evidence for
higher THg concentrations and body burdens in both caged and wild
fish in white rice and wild rice fields compared to fish in permanent
wetlands (J. T. Ackerman, U. S. Geological Survey, unpublished data).
However, we found similar results in that both invertebrate and fish
THg concentrations were higher at water outlets than at inlets of
wetlands, suggesting that inorganic Hg became methylated, concen-
trated, and transported in the direction of water flow. These
incongruent results for THg concentrations in invertebrates and fish
among wetland habitats indicate that bioaccumulation pathways in
wetlands are complex and underscore the importance of using several
taxa at different trophic levels to examine MeHg bioaccumulation
in wetlands. The complexity of MeHg bioaccumulation in wetlands
is further illustrated by the fact that we did not find a correlation
between THg concentrations in Notonectidae and Corixidae, even
though the paired samples were collected at the same sites and on
the same days. Notonectidae (Notonecta) typically forage at a higher
trophic level than Corixidae (Corisella; Menke, 1979; Merritt and
Cummins, 1996). Thus, the lack of correlation between their THg
concentrations indicates that they foraged on different prey items and
that the two invertebrateswere not tightly linkedwithin the foodweb.

As in other studies of wetland invertebrates (e.g., George and
Batzer, 2008), we found that THg concentrations in invertebrates
differed among taxa. THg concentrations in Notonectidae tended to be
higher than in Corixidae, especially at the end of the rice growing
season and in permanent wetland habitats. Both Notonectidae
(mean THg: 1.18µg g−1dw) and Corixidae (mean THg: 0.89, mean
MeHg: 0.74µg g−1dw) Hg concentrations at the Yolo Wildlife Area
were considered high when compared to invertebrates in other
wetlands. For example, MeHg concentrations in experimentally
flooded Ontario wetlands averaged 0.12 to 0.32µg g−1dw in
Corixidae and 0.16 to 0.44µg g−1dw in Notonectidae (Hall et al.,
1998). Corixidae THg concentrations in Portugal saltpan wetlands
were 0.03 to 0.15µg g−1dw (Tavares et al., 2008). Notably, Corixidae
THg and MeHg concentrations were higher at the Yolo Wildlife
Area wetlands than in wetlands located downstream within the
same watershed in San Francisco Bay (THg: 0.63µg g−1dw, MeHg:
0.59µg g−1dw; A. K. Miles, U. S. Geological Survey, unpublished data).

Considering that 75% and 48% of all Corixidae samples at the Yolo
Wildlife Area exceeded reported MeHg dietary effect levels of
0.50µg g−1dw for mallard reproduction (Anas platyrhynchos; Heinz,
1979) and 0.70µg g−1dw for American kestrel reproduction (Falco
sparverius; Albers et al., 2007), respectively, and that Corixidae are
common in waterfowl diets (Euliss and Jarvis, 1991), higher trophic
level predators may be at risk to current Hg concentrations in prey
within Yolo Bypasswetlands. For example, within San Francisco Bay,we
found that black-necked stilt chicks (Himantopus mexicanus) found
dead near nesting sites had higher THg concentrations in down feathers
than those in randomly-sampled live chicks of similar age (Ackerman et
al., 2008) and that failed-to-hatch Forster's tern (Sterna forsteri) eggs
had higher THg concentrations than randomly-sampled live eggs
(Ackerman and Eagles-Smith, 2008). Similar deleterious effects of Hg
on waterbird reproduction may be occurring within Yolo Bypass
wetlands where Hg concentrations in prey are considerably higher
than in San Francisco Baywetlands. In fact,MeHg concentrations in Yolo
Bypass invertebrates were substantially higher than the Sacramento–
San Joaquin RiverDelta TMDLbenchmarkMeHg concentration for small
fish (0.03µg g−1ww, or approximately 0.11µg g−1dw assuming 73%
moisture [J. T. Ackerman, U. S. Geological Survey, unpublished data])
that ismeant to be protective ofwildlife (Wood et al., 2008). Thus, there
maybe substantial risk ofMeHg toxicity towaterbirds andotherwildlife
that forage in Yolo Bypass wetlands and MeHg concentrations in
waterbirds should be evaluated.
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