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ABSTRACT Transparency in resource management decisions requires a proper accounting of uncertainty at
multiple stages of the decision-making process. As information becomes available, periodic review and
updating of resource management protocols reduces uncertainty and improves management decisions. One
of the most basic steps to mitigating anthropogenic effects on populations is determining if a population of a
species occurs in an area that will be affected by human activity. Species are rarely detected with certainty,
however, and falsely declaring a species absent can cause improper conservation decisions or even extirpation
of populations. We propose a method to design survey protocols for imperfectly detected species that
accounts for multiple sources of uncertainty in the detection process, is capable of quantitatively incorporating
expert opinion into the decision-making process, allows periodic updates to the protocol, and permits
resource managers to weigh the severity of consequences if the species is falsely declared absent. We
developed our method using the giant gartersnake (Thamnophis gigas), a threatened species precinctive
to the Central Valley of California, as a case study. Survey date was negatively related to the probability of
detecting the giant gartersnake, and water temperature was positively related to the probability of detecting
the giant gartersnake at a sampled location. Reporting sampling effort, timing and duration of surveys, and
water temperatures would allow resource managers to evaluate the probability that the giant gartersnake
occurs at sampled sites where it is not detected. This information would also allow periodic updates and
quantitative evaluation of changes to the giant gartersnake survey protocol. Because it naturally allows
multiple sources of information and is predicated upon the idea of updating information, Bayesian analysis is
well-suited to solving the problem of developing efficient sampling protocols for species of conservation
concern. � 2011 The Wildlife Society.
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Accounting for imperfect detection in demographic studies is
of paramount importance for estimating population
parameters (Williams et al. 2002, Mazerolle et al. 2007).
Errors arising from imperfect detection are particularly egre-
gious for rare species, which are often difficult to detect
(MacKenzie et al. 2004). For rare, difficult to detect species,
wrongly declaring the species absent from a site can result in
inappropriate conservation action, or worse, extirpation of
populations. Therefore, survey protocols for rare species, in
particular, need to pay careful attention to the problem of
imperfect detectability and quantify uncertainty associated
with declaring the species absent from a site.
Occupancy modeling is a particularly useful approach for

quantifying uncertainty in the occurrence of a species

(MacKenzie et al. 2002). Occupancy models involve repeated
surveys, usually (though not necessarily) consisting of
multiple visits to several sites (MacKenzie et al. 2006).
These multiple site visits allow estimation of the probability
of detecting the species, and heterogeneity in the detection
process can often be attributed to site, temporal, and
temporally varying site characteristics (Royle 2006). Once
the probability of detecting the species in a given survey has
been determined, the minimum number of surveys required
to infer its absence, given a specified level of confidence, is
straightforward (Kéry 2002, Wintle et al. 2005). Although
general guidelines exist for designing occupancy studies
(MacKenzie and Royle 2005), few standardized protocols
for surveys of rare species are based upon explicit quantification
of detectability (but see Wintle et al. 2005, Driscoll 2010).
Bayesian analysis of occupancy models offers several poten-

tial advantages over frequentist analysis of such models.
Small sample sizes are typical in resource management set-
tings, and Bayesian inference is exact, regardless of sample
size, whereas frequentist inference often requires asymptotic

Received: 7 February 2010; Accepted: 4 July 2010

Additional Supporting Information may be found in the online version
of this article.
1E-mail: bhalstead@usgs.gov

Journal of Wildlife Management 75(2):450–457; 2011; DOI: 10.1002/jwmg.55

450 Journal of Wildlife Management � 75(2)



approximations, meaning that estimates of uncertainty are
valid for large samples only (Royle and Dorazio 2008, Kéry
2010, Link and Barker 2010). Bayesian inference is also more
intuitive for many people because it expresses confidence in
the distribution of a parameter rather than confidence that an
interval contains the true value of the parameter, as in
frequentist inference. Another advantage of Bayesian infer-
ence for the resource manager is that accounting for propa-
gation of error is straightforward and does not require
approximations like the delta method (Williams et al.
2002, Kéry 2010). Prediction is similarly straightforward
and can be directly implemented into the analysis or derived
from posterior distributions of parameters. The use of prior
information, when available, is another advantage of the
Bayesian approach to statistical analysis; the fear that such
prior information taints results can be assuaged by perform-
ing a prior sensitivity analysis (Link and Barker 2010).
The giant gartersnake (Thamnophis gigas) is a large (to

1.6 m total length), semi-aquatic snake precinctive to the
Central Valley of California (Fitch 1940, Hansen and Brode
1980). Because of its limited distribution and the loss of
nearly 90% of its original wetland habitat to agricultural and
other development (Frayer et al. 1989), the giant gartersnake
is listed as threatened by both the United States Fish and
Wildlife Service (USFWS 1993) and the California
Department of Fish and Game (1971). The giant garter-
snake is both wary and cryptic, and it readily drops from
emergent vegetation into water upon approach (Hansen
1980). In addition to its ability to evade surveyors, the giant
gartersnake also exhibits extensive periods with little or no
movement, often in burrows or deep cracks in the soil (G. D.
Wylie, U.S. Geological Survey, unpublished data). These
characteristics make the giant gartersnake difficult to survey.
Because of difficulty surveying the giant gartersnake and
conservation concern for this species, it is imperative that
surveys conducted for the species quantify the degree of
confidence in declaring the species absent from sites where
potential negative effects of anthropogenic activities have
been identified.
Our objective was to develop a repeatable, quantitative

survey protocol for the giant gartersnake that accounts for
uncertainty in model selection and parameter estimation. In
particular, we were interested in developing a method that
allows identification of the variables affecting detection
probability and using the resulting model to develop repeat-
able survey methods. We illustrate the utility of our method
with an analysis of the detectability of the giant gartersnake
and propose a standardized survey method based upon our
results.

STUDY AREA

We surveyed for the giant gartersnake in >100 locations in
the Central Valley of California, USA, from 2003 through
2009. Sampling effort was predominantly within the
Sacramento Valley (northern portion of the Central
Valley), but some sites were located in the San Joaquin
Valley (southern portion of the Central Valley) and the
Sacramento-San Joaquin Delta region as well. The

geographic location of survey sites was based upon locations
of funded projects.

METHODS

We sampled the giant gartersnake using transects of 10–398
(x ¼ 59) floating aquatic funnel traps (Casazza et al. 2000).
Within a site, individual transects were located in areas of
standing or slow-moving water and, where possible, emer-
gent aquatic vegetation. These characteristics are important
attributes of giant gartersnake habitat for foraging and cover
from predators (G. D. Wylie, unpublished data). We placed
traps approximately 10 m apart in water deep enough to float
the traps (�10 cm) and placed them so funnel openings were
along a bank or the edge of emergent vegetation wherever
possible. We deployed traps and monitored them daily
during the active season of the giant gartersnake (Apr to
Oct) each year for 12–142 consecutive days. We measured
several transect characteristics, including habitat type (canal
vs. wetland), the number of individual giant gartersnakes
captured each day, the number of traps deployed, and daily
surface water temperature at the time of sampling. We
handled snakes in accordance with University of
California–Davis Animal Care and Use Protocol (protocol
9699) and as stipulated by USFWS (Recovery Permit
TE-020548-5).
We determined the effect of multiple variables on detection

probability (p) of the giant gartersnake in trap transects using
a Bayesian analysis of logistic regression models (Royle and
Dorazio 2008, Kéry 2010). We split our data into 2 parts,
using data collected from 2003 through 2006 (n ¼ 67 trans-
ects) for the initial development of the survey protocol and
data from 2007 through 2009 (n ¼ 22 transects) to dem-
onstrate the process of periodically updating the protocol. In
practice, one would use all available data for development of
the survey protocol. We developed a model for p that con-
tained several covariates that could either be determined a
priori by the surveyor or that could easily be measured before
or during sampling. We treated each transect as a site in our
analysis. Site covariates we included in our model included
habitat type (wetland or canal, which specified the presence
of a steep bank to act as a drift fence); an index of snake
abundance, calculated as the maximum number of individ-
uals captured in one sampling event (day) divided by the
number of traps in the transect; and the number of traps
deployed. In addition to these site covariates, we also
examined the influence of water temperature and time of
year (days since 1 Apr) on p. We included a quadratic effect
of time of year to determine if an optimal time of year for
sampling existed. We centered and standardized each con-
tinuous variable and specified a random site effect for p to
account for differences in detection probability not attribu-
table to measured variables. We selected important variables
and determined posterior model probabilities by associating
an indicator variable with each coefficient and determining
the frequency of each unique combination of indicator vari-
ables in the Markov chain Monte Carlo (MCMC) output
(Kuo and Mallick 1998, Royle and Dorazio 2008). We used
posterior model probabilities to calculate model-averaged
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parameter estimates. Our full model was therefore:

log
pij

1�pij

� �
¼ a0 þw1a1habitati þw2a2popindexi

þ w3a3trapnoi þw4a4watertempij

þ w5a5dateij þ w5w6a6date
2
ij þ "i;

where pij is the detection probability at site i on occasion
j, wk is the indicator variable for predictor k, ak is the
coefficient for predictor k, and "i � N ð0; sÞ is the random
site effect.
We fit the model using 2 sets of priors applied to the 2003–

2006 data and updated the results of the uninformative priors
with the 2007–2009 data (Table 1). We selected the first set
of priors for the 2003–2006 data to be uninformative and the
second set represented informative priors based upon expert
opinion derived from data collected prior to 2003. The
informative prior distribution of the mean intercept
expressed past experience that, on average for most sites at
which the giant gartersnake occurs, about 10% of daily
surveys result in detection (G. D. Wylie, unpublished data;
Table 1). The informative gamma prior on the site standard
deviation had mean ¼ variance ¼ 1. We based informative
priors for number of traps, water temperature, and date upon
correlation of these variables with the number of snakes
captured in previous studies. We reflected the prior distri-
bution at zero to limit effects to either positive or negative
(G. D. Wylie, unpublished data; Table 1). For variables with
no data upon which to base informative priors (i.e., habitat
type, population index, and quadratic effect of date), expert
opinion was expressed as a half-normal (standard N(0, 1))
distribution to represent expectations that effects were
positive or negative (Table 1). The third set of priors was
the posteriors from the uninformative analysis of 2003–2006
data; we used these priors to update the model with data
collected 2007–2009 (Table 1). Regardless of the priors
used or data analyzed, we conducted the analysis using

MCMC methods as implemented in WinBUGS 1.4.3
(Spiegelhalter et al. 2003) with 5 chains of 200,000 iterations
each, thinned by a factor of 100 after 20,000 burn-in
iterations. We selected starting values for each parameter
in each chain to be reasonable, but dispersed enough to assess
convergence (Table 1). We examined history plots and the
Gelman–Rubin statistic (Gelman et al. 2004) as calculated
by package coda (Plummer et al. 2008) for each parameter
for evidence of lack of convergence. We determined the
adequacy of our model with a posterior predictive model check
using a Bayesian P-value (Kéry 2010, Link and Barker 2010).
We used the posterior predictive distribution from the

updated model to determine the probability that hypothet-
ical surveyed sites were occupied, given that no detections
occurred. We specified the data for the hypothetical sites to
indicate the effect of survey conditions on inferring that a
species is absent, given that it is not detected. Our standard
survey consisted of 50 traps deployed in a canal on 1 June in
25 � 1.58C (x � SD) water for either 28 consecutive days
or 56 consecutive days. From these standard conditions,
we systematically varied the starting date of the surveys
(early ¼ 1 Apr, late ¼ 1 Aug) and water temperature
(hot ¼ 30 � 1.58C, cold ¼ 20 � 1.58C). We drew daily
water temperatures from a normal distribution with specified
mean and standard deviation. We calculated the expected
daily capture probability for each hypothetical site from the
current draw from the posterior distribution at each iteration,
and we drew an occupancy indicator for each hypothetical
site from a Bernoulli distribution. To specify prior ignorance
on the occupancy status of the hypothetical sites, we specified
a Be(1, 1) prior on the probability of occupancy (c), and we
drew each site’s occupancy indicator from a Bern(c) distri-
bution. The posterior mean of the occupancy indicator
specifies the posterior probability that the site is occupied,
given the survey conditions and no detections. This pro-
cedure is readily adapted to actual sites, and informative
priors can be used if, for example, surveys in previous years
indicated presence of the species or if the site contains high-

Table 1. Prior probabilities and initial values for each parameter of each alternative analysis of the Bayesian logistic regressionmodel we used to develop a survey
protocol for the giant gartersnake in the Central Valley of California, 2003–2009.

Parametera
Prior probabilities Initial values

Uninformative Informative Update Uninformative and update Informative

ssite U(0, 100) Gamma(1, 1) Gamma(76.8, 69.8) (0.1, 1, 2, 3, 5) (0.1, 1, 2, 3, 5)
a0 N(0, 0.0001) N(�2, 0.25) N(�1.784, 0.338) (�5, �2, 0, 2, 5) (�3, �2.5, �2, �1.5, �1)
a1 N(0, 0.0001) �jN(0, 1)j N(0.0002, 0.029) (�5, �2, 0, 2, 5) (�4, �3, �2, �1, 0)
a2 N(0, 0.0001) jN(0, 1)j N(0.069, 0.385) (�5, �2, 0, 2, 5) (0, 1, 2, 3, 4)
a3 N(0, 0.0001) jN(0.5, 0.2)j N(0.003, 0.030) (�5, �2, 0, 2, 5) (0, 0.5, 1, 1.5, 2)
a4 N(0, 0.0001) jN(0.5, 0.25)j N(0.058, 0.096) (�5, �2, 0, 2, 5) (0, 0.5, 1, 1.5, 2)
a5 N(0, 0.0001) �jN(�0.5, 0.2)j N(�0.101, 0.133) (�5, �2, 0, 2, 5) (�2, �1.5, �1, �0.5, 0)
a6 N(0, 0.0001) �jN(0, 1)j N(0.000, 0.004) (�5, �2, 0, 2, 5) (�4, �3, �2, �1, 0)
w1 Bern(0.5) Bern(0.5) Bern(0.004) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)
w2 Bern(0.5) Bern(0.5) Bern(0.043) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)
w3 Bern(0.5) Bern(0.5) Bern(0.009) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)
w4 Bern(0.5) Bern(0.5) Bern(0.291) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)
w5 Bern(0.5) Bern(0.5) Bern(0.391) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)
w6 Bern(0.5) Bern(0.5) Bern(0.001) (1, 1, 1, 1, 1) (1, 1, 1, 1, 1)

a ssite ¼ SD of random site effect, a0 ¼ intercept, a1 ¼ effect of habitat (canal vs. wetland), a2 ¼ effect of population index, a3 ¼ effect of number of traps,
a4 ¼ effect of temperature, a5 ¼ effect of days since 1 Apr, a6 ¼ effect of (days since 1 Apr)2, wk ¼ indicator variable for selection of model containing
variable k.
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quality habitat near existing populations. We further calcu-
lated the cumulative probability of detecting the giant garter-
snake at each hypothetical site, assuming that the giant
gartersnake is present. Cumulative probability of detection
is the probability that the species will be detected after n
surveys, given that it is present at the site, and is a useful
metric for planning the number of surveys under specified
conditions (Kéry 2002). We calculated cumulative prob-
ability of detection as 1�Qn

i¼1 ð1�pijÞ, where pij is the
specified quantile of detection probability on survey i at site
j, and n is the number of surveys (Kéry 2002).
We conducted all analyses by calling WinBUGS 1.4.3

(Spiegelhalter et al. 2003) from R (R Version 2.11.0,
http://www.R-project.org, accessed 25 Jun 2010) using
the package R2WinBUGS (Sturtz et al. 2005; Supporting
Information Appendix A, available online at www.onlineli-
brary.wiley.com). We used the R packages coda (Plummer et
al. 2008) to calculate the Gelman–Rubin statistic and data
summaries of each parameter and emdbook (Bolker 2007) to
format the MCMC output for calculation of derived
parameters in R (Supporting Information Appendix A, avail-
able online at www.onlinelibrary.wiley.com).

RESULTS

We detected the giant gartersnake at 89 individual transects
from 2003 to 2009 (2003–2006 ¼ 67 transects; 2007–
2009 ¼ 22 transects). The diagnostic history plots appeared
well mixed and the Gelman–Rubin statistic was <1.05 for
each monitored parameter when we analyzed the model
using uninformative priors. The posterior predictive check
for the uninformative analysis also did not indicate model
inadequacy (Bayesian P-value ¼ 0.451). With uninforma-
tive priors, 5 detection probability models had posterior
probabilities >0.01 (Table 2). The best-supported model

was the null model of constant detection probability with
a random site effect (posterior probability ¼ 0.446). Other
supported models included effects of date (0.224), date and
water temperature (0.145), and water temperature (0.131;
Table 2). Although posterior probability distributions of all
model-averaged coefficients contained zero, probability of
detecting the giant gartersnake decreased later in the year and
increased with increasing water temperature (Fig. 1). Mean
daily detection probability was 0.14 (Fig. 1).
Diagnostic history plots appeared well mixed and the

Gelman–Rubin statistic was <1.03 for each monitored
parameter when we analyzed the model using informative
priors. The posterior predictive check for the informative
analysis also did not indicate model inadequacy (Bayesian
P-value ¼ 0.338). Analysis of the model using priors
informed by expert opinion resulted in more highly para-
meterized models having increased support (Table 2). In
particular, the best-supported model with informative priors
was that with effects of date, number of traps, and water
temperature (0.359; Table 2); these variables also had the
strongest prior probabilities. Seven additional models had
posterior probabilities >0.01. The best-supported of these
models included date and water temperature (0.208); date,
number of traps, population index, and water temperature
(0.154); date, population index, and water temperature
(0.069); and date, habitat, and water temperature (0.054;
Table 2). Informative priors decreased the posterior prob-
ability of no effect for most parameters and shifted the
posterior distribution of most parameters toward the prior
mean relative to posteriors based upon analysis of the model
with uninformative priors (Fig. 2). Alternatively, we can
interpret the posteriors for coefficients of all variables as
decreased belief in the magnitude of the effects of each
variable on detection probability of the giant gartersnake
(Fig. 2).

Table 2. Posterior probabilities of models for the probability of detecting the giant gartersnake in the Central Valley of California from 2003 to 2009.

Parametera Posterior probabilityb

Date Date2 Habitat No. traps Pop. index Temp Uninformative Informative Update

1 0 0 0 0 1 0.145 0.208 0.894
1 0 0 0 0 0 0.224 0.002 0.038
1 0 0 0 1 1 0.007 0.069 0.035
0 0 0 0 0 1 0.131 0.001 0.014
1 0 0 1 0 1 0.001 0.359 0.010
1 0 1 0 0 1 0.000 0.054 0.003
1 0 0 0 1 0 0.010 0.001 0.002
1 0 0 1 1 1 0.000 0.154 0.001
0 0 0 0 0 0 0.446 0.000 0.000
0 0 0 0 1 0 0.019 0.000 0.000
1 0 1 1 0 1 0.000 0.077 0.000
1 0 1 1 1 1 0.000 0.030 0.000
1 0 1 0 1 1 0.000 0.016 0.000

a A ‘‘1’’ indicates that the parameter was included in the model, and a ‘‘0’’ indicates that the parameter was not included in the model. Habitat ¼ habitat type
(canal vs. wetland), no. traps ¼ number of traps, pop. index ¼ population size index, and temp ¼ water temp.

b Uninformative ¼ posterior probability from analysis of the 2003–2006 data using uninformative priors, expert ¼ posterior probability from analysis of the
2003–2006 data using priors informed by expert opinion, and update ¼ posterior probability from analysis of the 2007–2009 data using posteriors from the
uninformative 2003–2006model as priors.We listed models in order of decreasing posterior probability based upon the updated model, then the model with
uninformative priors, and finally the model with informative priors.We included only those models with a posterior probability�0.01 for any set of priors or
data in the table.
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Diagnostic history plots appeared well mixed and the
Gelman–Rubin statistic was <1.08 for each monitored
parameter of interest when we updated the model with data
from 2007 to 2009 using priors informed by uninformed
analysis of the 2003 to 2006 data. The posterior predictive
check for the informative analysis also did not indicate model
inadequacy (Bayesian P-value ¼ 0.566). Updating the
model resulted in much greater posterior probability for
the model with effects of date and water temperature
(0.894; Table 2). Three additional models had posterior
probabilities >0.01, but none of these had a posterior prob-
ability >0.05. Updated model-averaged posterior distri-
butions were similar to those from the original analysis,
except that the negative effect of date and positive effect
of water temperature both increased in magnitude (Fig. 1).
The model-averaged posterior distribution for the effect of
date had a median of �0.279 (95% credible inter-
val ¼ �0.451 to �0.082). These values correspond to daily

probability of detecting the giant gartersnake in a transect on
21 August of 0.097 (95% CI ¼ 0.064–0.146), relative to
0.124 (0.087–0.175) on 13 July (the latter date is the mean
survey date; the former is 1 SD after mean survey date). The
95% credible interval of this difference is 0.008–0.046. The
model-averaged posterior distribution for the effect of water
temperature had a median of 0.211 (95% CI ¼ 0.000–
0.364), which corresponds with a 0.125 (0.087–0.175) daily
probability of detecting the giant gartersnake in 24.58C
water but 0.150 (0.101–0.214) in 27.58C water. The 95%
credible interval of this difference is 0.000–0.049.
The conditions under which we conducted surveys affected

the posterior predictive probability that the site was occu-
pied, given that no detections occurred (Table 3). In particu-
lar, non-detection surveys consisting of longer sampling
periods, earlier in the year, and in warmer water resulted
in a lower probability that the site was actually occupied, but
the giant gartersnake was missed (Table 3). Similarly, the

Figure 2. Posterior probability distributions for Bayesian logistic regression
model parameters of detection probability for the giant gartersnake in the
Central Valley of California, 2003–2009, based upon informative priors
representing expert opinion. A: Mean intercept, (B) standard deviation of
intercept, (C) habitat type, (D) population size index, (E) number of traps,
(F) water temperature, (G) date, and (H) date2. Heavy solid lines indicate
posterior probability distributions, light solid lines indicate prior distribu-
tions, and light dashed lines indicate posterior probability distributions from
themodel fit to the same data using uninformative priors. Note that scales on
the axes differ for each plot.

Figure 1. Posterior probability distributions for Bayesian logistic regression
model parameters of detection probability for the giant gartersnake in the
Central Valley of California, 2003–2009, based upon uninformative prior
distributions. A: Mean intercept, (B) standard deviation of intercept, (C)
habitat type, (D) population size index, (E) number of traps, (F) water
temperature, (G) date, and (H) date2. Dashed lines indicate initial modeling
posterior probability distributions (which we used as prior probability dis-
tributions for updating the protocol), and solid lines indicate the updated
posterior probability distributions. Bimodal posterior distributions are the
result of mixtures representing an increased mass at zero when the indicator
for that variable was zero. Note that scales on the axes differ for each plot.
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cumulative probability of detecting the giant gartersnake was
greater earlier in the year and in warmer water (Fig. 3).

DISCUSSION

Our method has several benefits over maximum likelihood-
based inference typically used for logistic regression and
occupancy modeling. Perhaps the greatest benefit is the
ability of Bayesian methods to incorporate prior information
into analysis. Expert opinion is often used to develop survey
methods for organisms of conservation concern. The
Bayesian method we outlined allows the use of expert
opinion in a quantitative analysis; one need only specify
the prior distribution to represent existing knowledge or
opinion. This prior belief in the effects of survey conditions
on detection is easily updated with data using MCMC
techniques in a Bayesian analysis to obtain posterior

inference. Although Bayesian inference is exact for all sample
sizes, the more data, the less influence the prior distribution
has on the posterior distribution (Gelman et al. 2004, Royle
and Dorazio 2008, Link and Barker 2010). In our study,
using informative priors based upon expert opinion resulted
in additional variables having important consequences for
detection probability. In many cases, the retention of vari-
ables thought important for explaining the detection process
might be a desirable property because it prevents the pre-
mature dismissal of these variables when insufficient data
exist to provide strong evidence for an effect. On the other
hand, if an analysis that disregards prior knowledge is
desired, an objective Bayesian analysis can be conducted
using diffuse, uninformative priors. The latter analysis will
provide posterior inference similar to that obtained with
frequentist methods using maximum likelihood estimation
(Kéry 2010). In either case, posterior distributions of
parameter estimates from these models can be used as priors
for an update of the models with new data. Ideally, survey
protocols would be re-evaluated periodically as surveys are
conducted and additional data accumulated in an adaptive
monitoring framework (Wilhere 2002, McCarthy and
Possingham 2007).
An additional benefit of Bayesian analysis is the use of the

posterior predictive distribution for easily calculating derived
parameters. Once the posterior distribution of a parameter is
calculated, the posterior distribution of any function of that
parameter is readily obtained by simply calculating the
desired function using samples from the parameter’s
posterior distribution (Link and Barker 2010). Frequentist
analysis would require use of the delta method to approxi-
mate uncertainty associated with derived parameters

Table 3. Probability of occupancy for hypothetical sites surveyed for the
giant gartersnake, given no detections under specified conditions, based upon
surveys conducted in the Central Valley of California from 2003 to 2009.

Conditiona
4 weeks of daily
surveys (n ¼ 28)

8 weeks of daily
surveys (n ¼ 56)

Early 0.009 0.002
Late 0.019 0.009
Hot 0.006 0.004
Cold 0.012 0.007

a Except where indicated, conditions were a small population
(index ¼ 0.01 individuals/trap), 50 traps, 25 � 1.58C water, and surveys
beginning on 1 Jun. Early ¼ surveys beginning 1 Apr, late ¼ surveys
beginning 1 Aug, hot ¼ 30 � 1.58C water, and cold ¼ 20 � 1.58C
water. We drew daily water temp from a normal distribution with
specified x and SD.

Figure 3. Cumulative detection probabilities for the giant gartersnake in the Central Valley of California, 2003–2009, given occurrence under different
scenarios. Except where indicated, conditions were a small population (index ¼ 0.01 individuals/trap), 50 traps, 25 � 1.58Cwater, and surveys beginning on 1
June. In each plot, the heavy line represents the median cumulative detection probability and the light line represents the 0.05 quantile of cumulative detection
probability. A: Solid line ¼ surveys beginning 1 April, dashed line ¼ surveys beginning 1 August; and (B) solid line ¼ 30 � 1.58C water, dashed
line ¼ 20 � 1.58C water. We drew daily water temperatures from a normal distribution with specified mean and standard deviation.
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(Williams et al. 2002). A related construct is the analysis of
hypothetical replicates, which are easily calculated using the
Bayesian posterior predictive distribution (see Supporting
Information Appendix A, available online at www.onlineli-
brary.wiley.com). In our study, using derived parameters and
hypothetical replicates allowed prediction of the probability
that a hypothetical site that was not in the sample was
occupied, given survey conditions, without making the
asymptotic assumptions required to do so with a frequentist
analysis (Link and Barker 2010).
Our method also explicitly accounts for several sources of

uncertainty in developing the survey protocol. We dealt with
model selection uncertainty using Bayesian multimodel
inference (Royle and Dorazio 2008, Link and Barker
2010), which is analogous to model averaging using infor-
mation criteria, such as Akaike’s Information Criterion
(AIC). Model selection uncertainty is an important, but
often overlooked, source of uncertainty in resource manage-
ment that should be honestly accounted for in management
decisions (Wintle et al. 2003, Ellison 2004). We also
accounted for uncertainty in parameter estimation by using
the entire posterior predictive distribution of parameter esti-
mates for out of sample inference and prediction, which is
particularly important when the model contains unexplained
heterogeneity in the form of random effects, because unob-
served site characteristics can affect the observed response.
One potential source of uncertainty that we did not address
was that sampled sites at which no detections occur might
have actually been occupied, but the giant gartersnake was
undetected. We conditioned our analyses on sites known to
be occupied to focus inference on the detection process;
nonetheless, such additional heterogeneity can often be
accounted for in an occupancy model.
Accounting for these various sources of uncertainty might

initially appear to make management decisions daunting, but
it adds full transparency to the decision-making process and
allows resource managers latitude in making management
decisions. For example, managers can specify a degree of
certainty that a site is not occupied at which a proposed
action would be allowed, based upon the severity of the
consequences for the species in question, and determine if
the posterior predictive distribution of the probability of
occurrence exceeds that value, given survey conditions. A
liberal assessment for minor impacts might allow a proposed
action if the posterior probability of occurrence is less than,
for example, 0.1; if the consequences of the proposed action
are severe, managers might require a posterior probability of
occurrence to be <0.01 (or some other small probability). As
an alternative strategy, managers could specify a minimum
number of surveys necessary to declare a species effectively
absent from a site, given no individuals are detected, based
upon the posterior predictive distribution of the cumulative
probability of detection under specified conditions (Fig. 3). If
a proposed action will not have large negative impacts to the
species, the median (e.g., see bold lines in Fig. 3) of this
distribution could be used to calculate the number of surveys
required to declare the species effectively absent. However, if
a proposed action is likely to have dire consequences for a

population of an extremely rare species, then managers can
use a low quantile of the posterior distribution of detection
probability, and therefore require greater survey effort, to
declare the species effectively absent from the site (e.g., fine
lines in Fig. 3). Of course, management decisions could also
account for the value of unoccupied sites for potential col-
onization, but decision-making in this context is outside the
scope of our analytical approach. In many cases, however,
management decisions can be made based upon the cost of
falsely declaring a species absent, with a transparent account-
ing of both uncertainty and the decision-making process
(Wade 2000). This decision-making process can be formal-
ized in a Bayesian decision analysis, whereby uncertainty in
process inputs and outcomes are incorporated into the choice
of alternative courses of action (Ellison 1996, Harwood
2000, Wade 2000, Gelman et al. 2004). Wade (2000) pro-
vides an approachable example of Bayesian decision analysis
for research managers.

MANAGEMENT IMPLICATIONS

Survey conditions influenced the probability of falsely declar-
ing the giant gartersnake absent from a site. Both planning
surveys and interpreting survey results must account for
effects of survey conditions on detecting the giant garter-
snake. We propose several recommendations for a stand-
ardized survey protocol for the giant gartersnake. We
recommend sampling as early in the active season (after 1
Apr) as possible to increase detection probability. Detection
probability also increased with increasing water temperature,
thus surveys conducted in cooler water (e.g., irrigation
ditches supplied with well water) or during cold weather
should include more sampling days. We further recommend
that no surveys be commenced after 1 October because of low
detection probabilities (late date and likely cold weather) and
impending hibernation. Despite the small effect of other
variables, we recommend they be recorded (along with
any additional information the surveyor thinks is relevant
to detectability), because additional data might demonstrate
these, and potentially other, variables to be important. This
was indeed the case with our analysis, where the null model
of no covariate effects had the greatest posterior probability
in the preliminary analysis, but no posterior support when we
updated the model with additional data. The positive
relationship of trap number with detection probability, when
a non-zero relationship existed, therefore supports employ-
ing as many traps as practical to increase probability of
detection. The posterior distributions generated by our
analysis can be used to plan future giant gartersnake surveys
to maximize detection probabilities and to determine the
probability of occurrence of the giant gartersnake at locations
with existing non-detection surveys. We recommend that
resource management agencies mandate the collection and
reporting of detection histories, data on sampling effort and
survey conditions, and any modifications to standard proto-
cols in permits for surveys for the giant gartersnake and other
species of conservation concern. These data will then be
available to periodically update and refine survey protocols
(McCarthy and Masters 2005) or calculate the probability
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that the species of interest occurred at a location in which it
was not detected.
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