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A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is
discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying
time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and
space-time point processes is extended here to include methods for computing prototypes with marks and the
incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to
delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution
of wildfires within each wildfire season.
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1. INTRODUCTION

Suppose that one observes repeated realizations N1, N2, . . . , Nm, of a finite, marked space-time point process. Each realization Ni is a
finite collection of points fxi,1, xi,2, . . . , xi,ni

g where ni is the number of points in realization Ni and any point xi, j ¼ (t, z, m) occurs in
some product space S, the product of temporal, spatial and mark domains. Examples of marked space-time point process data are
abundant (for a review, see, e.g. Schoenberg et al., 2002), and include disease outbreaks, births of animals, or the occurrences of
other rare events such as earthquakes, lightning strikes, volcanic eruptions, or, as is the focus of our application here, wildfires.

The methods we employ here involve point process prototypes, which in turn rely on distance metrics between two realizations of
a point process. Given two such point patterns, a distance between the two can be defined using a variety of different possible
distance metrics (Victor and Purpura, 1997; Mateu et al., 2011). Among these possibilities, a particularly simple and important
example is the spike-time distance metric introduced by Victor and Purpura (1997) for the description of neuron-cell firings. With the
spike-time metric, the distance D(Ni, Nj) between two point patterns Ni and Nj is defined as the minimum total penalty required to
transform the points of Ni into those of Nj using three elementary transformations: points may be added to Ni each with a cost or
penalty pa, points may be deleted from Ni each with a penalty pd and the coordinates of points may be moved with cost proportional
to the size of the move. For purely temporal point processes, as described by Victor and Purpura (1997), moving a point t1 to a new
time t2 would be associated with a penalty pm|t2�t1|, and this moving penalty can be extended in obvious ways to the space-time
case using pm, a vector of penalties each corresponding to one coordinate of the domain (see e.g. Schoenberg and Tranbarger,
2008). Figure 1a shows an illustration of the spike-time distance metric. The penalty parameters are typically set by the user and can
either be tied to real costs in the applied problem or may be adjusted to achieve a desired number of points in the prototype
(Tranbarger and Schoenberg, 2010). In order for the spike-time distance to have the symmetry property requisite of formal distance
metrics, pa must equal pd. Diez et al. (2011) discuss an application using spike-time distance with pa 6¼ pd.

Given a collection fN1, . . . , Nmg of point patterns and cost parameters pa, pd and pm, one may define the prototype, P, of the
collection as the point pattern minimizing

X
DðNi; PÞ; ð1Þ

as in Schoenberg and Tranbarger (2008). Thus, the prototype is a natural measure of central tendency for collections of point
patterns, analogous in many ways to the median of a collection of real numbers. Figure 1b is a representation of fifty one-
dimensional point patterns along with the prototype summary for those fifty patterns. The patterns are simulated independent
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stationary Poisson processes on the interval [0,1] with rate k ¼ 4. The resulting prototype contains four points that are nearly equally
spaced.

In the case of point processes consisting of the space-time locations where California wildfires occur in a given year, and with
wildfire sizes as the marks, prototypes using spike-time distance may provide useful and easily interpretable summaries of central
tendency without reliance on a parametric model. Another convenient feature of the prototype is that, unlike other summaries such
as kernel smoothings, the prototype is always contained within the spatial support of the data, even when this support is a union of
several discrete areas (as in Figure 2). California wildfires naturally present themselves as ideal candidates for multi-dimensional
prototyping, because of the lack of agreement on parametric models for their occurrence and due to the high variability of wildfire
activity from year to year and season to season, rendering conventional averages of wildfire activity poor descriptions of typical

Figure 2. California state responsibility area. The plot is open sourced on the CalFire website, http://frap.cdf.ca.gov
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Figure 1. Left: Spike time distance transformation of one point-pattern realization into another. In this example, the second point
pattern is transformed into the first. Right: Example of a prototype. The contributing point patterns are 30 simulated independent
stationary Poisson processes on the interval [0,1] with rate k ¼ 4
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wildfire behaviour. For properties of point process prototypes, including analogies between the prototype and the median for real-
valued data, see Schoenberg and Tranbarger (2008) and Diez et al. (2011).

Previous summaries of catalogues of wildfire activity have largely been based on primarily temporal methods, including
estimating fire rotation intervals or computing fire frequency to size ratios, as well as parametric methods involving the fitting of
parametric wildfire models (see, e.g. Johnson and Gutsell, 1994, Keeley et al., 1999, Malamud et al., 2005, Moritz et al., 2005).
Unfortunately, temporal summaries that involve the description and/or modelling of each spatial sub-region separately often
depend critically on the rather arbitrarily chosen boundaries of the spatial regions, and parametric summaries suffer the
further disadvantage of relying on the assumption of a parametric model, which may be questionable. Some alternative non-
parametric spatial methods for summarizing catalogues of wildfire activity include simply examining the mean wildfire activity
over the given spatial region, or kernel smoothing the data. Such summaries are not easily interpretable and can be quite
misleading.

As an illustration, Figure 3 displays wildfires and the kernel smoothing of California wildfire activity on California Department
of Forestry and Fire Protection (CalFire) protected areas during the months of April from 1990 to 2006. Kernel smoothings
highlight areas of higher or lower wildfire frequency in April, but do not indicate central tendency for the month of April.
Prototypes highlight areas of higher wildfire frequency during April, while also providing an estimate of central tendency.
As with the mean and kernel smoothing, the prototype is entirely non-parametric and, away from the boundary, the estimates
typically do not depend critically on the boundaries of the spatial region. Further, prototypes and spike-time distance are
amenable to basic clustering algorithms like K-means (MacQueen, 1967) and can thus be used to classify collections of point
patterns or to identify significant changes in the point patterns over space or time.

This article is organized as follows. After briefly describing the California wildfire dataset that we explore in Section 2, extensions of
prototype methods are proposed in Section 3. One extension is that of spike-time distance and prototype determination from the
case of space-time point processes to that of space-time marked point processes. Another is the use of prototypes in clustering
algorithms for the purpose of delineating wildfire seasons in California. Results from our prototype analyses of the California wildfire
data are presented in Section 4, and a brief discussion is given in Section 5.

2. DATA

Data on wildfire occurrences on CalFire protected areas (see Figure 2) from 1990 through 2006 have been catalogued and provided
by the U.S. Geological Survey, Western Ecological Research Center, and were provided to us by CalFire. The dataset is a compilation
of several thousand wildfire recordings from various recording agencies. Variables of note for each observed wildfire in the dataset
include total area burned, spatial coordinates for the estimated origin location of each wildfire, and the date of origination of each
wildfire. Burn maps detailing the precise locations burned in each wildfire are available for many of the fires. A historical analysis of
wildfires in these regions was performed by Keeley (1982), who found in particular that 16.2% of wildfires on these lands were caused
by lightning, accounting for 13.1% of the total area burned, with the rest of the wildfires caused by humans. Though the database
contains many smaller fires, the catalogue of southern California wildfires has been posited to be complete only for wildfires of size at
least 0.0405 km2 (Schoenberg et al., 2003), so only the 6611 recorded wildfires burning at least 0.0405 km2 are considered for this
analysis. In what follows we consider the origin locations, times, and sizes of wildfires in each of the 17 years of data as a separate
realization of a spatial-temporal marked point process.
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Figure 3. April wildfires that occurred in CalFire protected areas from 1989 to 2006 (left). Numbers indicate years of occurrence and
locations indicate the origin locations of the wildfires. Kernel smoothing of April wildfire origin locations (right)
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Wildfire impact on ecosystems can be measured in various ways, such as by area burned, by fire intensity or the energy output
from a fire, by fire severity or the loss of vegetation biomass, and by human impacts such as loss of lives or property damage
(Johnson and Miyanishi, 2001; Keeley, 2009). Following the majority of previous studies employing statistical analysis to a catalogue
of wildfires, we explore burned area exclusively in this article as a measure of wildfire impact, but it should be noted that most of the
methods proposed could alternately function with different choices of metrics.

3. METHODS

This article introduces two new extensions of prototypes of multidimensional point processes. The first is the adaptation of
prototypes to marked point processes, so that one may not only summarize the spatial or temporal characteristics of a collection of
point process realizations, but summarize the marks, or in the case of our applied problem the wildfire sizes as well. It is important to
note upfront that prototyping in multiple dimensions is computationally expensive, especially if there are several thousand data
points to consider. For this reason, special considerations need to be made, especially when it comes to prototyping the marks of a
point process. The second extension is the use of clustering algorithms in conjunction with prototypes to estimate the start and end
dates of wildfire seasons for the spatial region considered.

3.1. Prototypes of collections of marked point processes

Given a collection of realizations of a marked point process, one approach to assigning marks to the prototype of the collection is to
consider the mark to be an additional dimension of the point process. There are three main problems, however, with treating the
marks similarly to how one treats spatial or temporal coordinates. The first is a computational problem and is especially important
with large spatial-temporal datasets. Since each coordinate of every point in the prototype of a collection of point process
realizations is equal to a coordinate in one of the points in the collection (Tranbarger and Schoenberg, 2010), prototypes are typically
determined by searching over large subsets of combinations of observed coordinates (Diez, 2010). Hence, the order of operations in
the search increases exponentially with the number of dimensions of the domain. For the wildfire dataset described in Section 2, with
two spatial coordinates, one temporal coordinate, and one mark coordinate for each point, searching over all spatial, temporal, and
mark coordinates of all points would mean considering 66114 ¼ 1.91 · 1015 possibilities for each point in the prototype. This
exceeds reasonable computing capacity.

A second problem is that in computation of spike-time distance, when considering moving a point of one point pattern to a
point of another point pattern, treating differences in marks comparably to differences in spatial-temporal coordinates is
problematic. One may choose movement penalties for the temporal and spatial domains objectively, using the criteria
suggested by Tranbarger and Schoenberg (2010) or Diez et al. (2011). These suggested penalties are set so that in determining
D(X,Y), given two homogeneous Poisson processes X and Y with rate equal to the observed average rate of the realizations in
the dataset, deleting any point in X or moving it the expected distance to its nearest neighbour in Y are equivalent. For a

purely spatial point process, and, for instance, if pa ¼ pd ¼ 1, the spatial movement cost pm(z) would simply be
ffiffiffiffi
p�n
jSj

q
, where �n is

the mean number of points in each spatial-point-process realization and |S| represents the total area of the spatial support.

Similarly, for a purely temporal point process, the temporal movement cost pm(t) would simply be �n
Dt, where Dt is the length of

the temporal support for the data. Typically, distance for multiple-dimensional spike-time metrics are considered in the L1 norm,
which conveniently allows for separate consideration of the spatial and temporal movement penalties for a spatial-temporal
prototype. If pa 6¼ pd, then one may add the constraint that the prototype should have its number of points equal to the
median number over the realizations in the dataset (Diez et al., 2011). The above criteria are shown in Schoenberg and
Tranbarger (2008) and Diez et al. (2011) to yield useful summaries of central tendency for spatial-temporal point processes.
In the case of marked point processes, however, no such convenient criterion for determining the moving penalty for the mark
coordinate appears to be readily available.

For application to wildfires, a third complication with treating the mark space in an analogous manner to the spatial and temporal
coordinates lies in the fact that most of the wildfires are small in size, but the largest fires are of critical importance in forecasting and
in summarizing previous activity. In the computation of spike-time distance, assigning a sizable penalty for moving points in the
mark dimension results in many of the points with large marks being deleted rather than moved to points in the prototype. Thus, the
prototype is constructed essentially by ignoring many of the largest fires in the dataset. On the other hand, if a very small penalty is
used for moving the marks of the points, then wildfires with very different sizes will be given comparable weight in determining the
prototype and, since most wildfires are small, the smallest fires will tend to have undue impact in determining the representation of
the typical realization in the dataset.

Given a collection of realizations of a space-time (or purely spatial, or purely temporal) marked point process, we propose first to
construct an initial prototype P of the realizations ignoring the marks. That is, find P by minimizingX

DðNi; PÞ;

using spike-time distance in time and space only (or equivalently, setting the moving penalty for changes in mark to zero). If the
spatial support may reasonably be approximated by a rectangle, then appropriate values for the moving penalty parameters pm

governing the spike-time distance metric may be set using the relations
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pmðtÞ ¼
�n

Dt
;

pmðxÞ ¼
ffiffiffiffiffiffiffi
p�n

jSx j

s
;

and

pmðyÞ ¼
ffiffiffiffiffiffiffi
p�n

jSy j

s
;

where pm(t), pm(x), and pm(t) denote the moving penalties along the temporal axis, the x-axis, and the y-axis, respectively, and Dt, |Sx|
and |Sy| represent the total duration, longitudinal range, and latitudinal range, respectively, of the spatial-temporal domain. Note that
to create a prototype of a purely spatial marked point process, one can either ignore the times associated with the points or simply
set the movement penalty in the temporal direction to zero. Similarly, setting the spatial moving penalties to zero results in a
prototype of the marginal temporal marked point process.

One may ensure that the prototype contains the median number of points ð~nÞ of all point-process realizations in the dataset by
allowing the addition and deletion penalties to differ. Following Diez et al. (2011) and Diez (2010), pa and pd are chosen to maximize
papd subject to the constraints that pa and pd must be non-negative with pa + pd ¼ 2 and that the prototype must have ~n points.

Once values for pa, pd, and pm are determined, an estimate of the prototype P may readily be computed using the forward search
algorithm implemented in the R statistical programming environment package ppMeasures. For each point Pj in the prototype,
consider the collection of points xij across all observed point patterns such that the point xij is moved to Pj in the computation of the
spike-time distance D(Ni, P). These points fxij : i ¼ 1, . . . , mgmay be thought of as the points in the data most closely associated with
the point Pj. We propose defining the mark associated with the point Pj as the mean of the marks associated with the points
fxij : i ¼ 1, 2, . . . , mg. The end result is a prototype P where each point Pj has an assigned value for its mark determined entirely by
the observation points that contribute, in terms of spike-time distance, to that point of the prototype.

3.2. Delineating California’s fire seasons

We discuss in this section how prototypes may be used in conjunction with clustering algorithms, with an eye toward estimating the
start and end dates of California’s wildfire seasons. It is well known that wildfires in California occur seasonally, due especially to
changes in wind patterns, climate, and land use throughout the year (Pyne et al., 1996; Westerling et al., 2003). For southern
California ecosystems, the fire season is marked by large numbers of fires during the months of July and August (Westerling et al.,
2003) and by fires with extremely high intensity in October and November (Keeley et al., 2009). A comprehensive understanding of
wildfire behaviour in southern California suggests three separate seasons. One season is marked by frequent wildfire occurrence, the
next by high wildfire area burned per wildfire, and the third by relative dormancy of fire activity. Indeed, recent efforts at forecasting
wildfire activity have been made by separating wildfire activity into three seasons and fitting different parameters in statistical
models for each season (Schoenberg et al., 2007). For instance, Schoenberg et al. (2009) consider models with different parameters in
three different wildfire seasons: a summer season when a high volume of fires occur, an autumn season when wildfire activity is most
extreme, and a winter season when wildfire activity is relatively minimal. However, the delineation of these wildfire seasons is quite
arbitrary in Schoenberg et al. (2009), and in this article we consider objective means for delineating the three main wildfire seasons in
California, using prototypes.

Consider the determination of the precise start and end dates of each fire season as a problem in selecting three parameters t1, t2

and t3 so as to optimally organize data into the fire seasons (t1, t2], (t2, t3] and (t3, t1]. Given any choice of dates t1, t2 and t3, one may
define the centroid of each of the three seasons as the prototype of the wildfire activity within that season, over the 17 years of
observations described in Section 2. One may then divide each season into some number K of equally sized sub-intervals and then
consider the summed distances from each of the 17K spatial-temporal realizations for each season to the corresponding portion of
the prototype, using the spike-time distance metric. As noted in Section 3.1, it makes sense to treat the marks (sizes) of the wildfires
differently from the spatial and temporal coordinates. Hence, we consider finding a spatial-temporal prototype for each season and,
separately, a prototype for the marginal collection of marks within each season. The optimal parameters t1, t2 and t3 may then be
estimated by minimizing the sum of the spike-time distances from the corresponding prototypes; that is, minimize

X17

i¼1

X3

j¼1

XK

k¼1

DðNijk; PjkÞ þ DðMij;QjÞ
( )

; ð2Þ

where Nijk is the observed spatial-temporal data of wildfire origin times and locations in year i during portion k of season j, Pjk is the
spatial-temporal prototype for portion k of season j, Mij are the observed wildfire sizes in year i during season j, and Qj is the mark
prototype of the wildfire sizes in season j.

In order for this search for the minimizer of (2) to be meaningful, it is necessary for the spike-time distances in (2) to be comparable
and, thus, to have the same spike-time penalty parameters for all three seasons and all years, rather than data-dependent penalty
parameters for each season. Hence, a different approach to selecting pa, pd and pm than the one described in Section 3.1 is required.
We propose first setting the addition and deletion penalties to unity and then setting the spatial movement penalty parameters to
the inverses of the marginal standard deviations of the data. That is, set
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pa ¼ pd ¼ 1; pm ¼ f1=rt; 1=rz1
; 1=rz2

g; ~pm ¼ 1=rs; ð3Þ

where rt, rz1
and rz2

are the standard deviations of the marginal temporal and marginal spatial occurrences, respectively, of the entire
observed dataset of 17 years, ~pm is the moving penalty for the marginal mark prototype, and rs is the standard deviation of the
observed wildfire sizes. The idea behind (3) is that the prototype-construction algorithm will be indifferent, in terms of spike-time
distance, between moving a typical observed point one standard deviation versus adding a point.

It is extremely computationally burdensome to consider each of the more than 8.1 million possible combinations of dates for t1, t2

and t3, and to compute all the prototypes and spike-time distances in (2) for each combination. For this reason, we implement a
forward-search algorithm to find an approximate minimizer of (2), by first searching over a coarse, limited choice of t1,t2 and t3, and
then progressively refining the search.

Specifically, we first limit the search only to the following six possible dates: January 1st, March 1st, May 1st, July 1st, September 1st,
November 1st. Next, we refine the search by considering a search over the combinations ft�1 � 0 or 1 month, t�2 � 0 or 1 month, t�3� 0 or
1 monthg, where ðt�1; t�2; t�3Þ was the optimum set of values found previously in the search over six possible dates. For example, if the
optimal starting dates after the first step were t�1 ¼ January 1st, t�2 ¼ May 1st and t�3 ¼ November 1st, then we search from all possible
combinations of:

t1 2 (December 1st, January 1st, February 1st);

t2 2 (April 1st, May 1st, June 1st);

t3 2 (October 1st, November 1st, December 1st):

The iterative search then continues by considering values from the previous step’s optimal solution ±15 days then ±8 days,
±4 days, ±2 days and finally ±1 day. The algorithm then selects the minimum of eqn (2) over all values inspected in this forward
search; note that the algorithm does not necessarily find the minimum of eqn (2) over all possible choices. of t1, t2, and t3, however.

4. RESULTS

Figures 4 and 5 show prototypes for each of the 12 months of the calendar year, along with the original data from which they were
derived. The prototypes created in Figures 4 and 5 are purely spatial prototypes. One can observe in Figures 4 and 5 that the activity
is increased in the summer months, especially July and August, and that the sizes of the prototypical fires burning in October are
much larger than those in the other months.

The prototypes in Figures 4 and 5 appear to highlight two regions in California as particularly susceptible to wildfire occurrence
from May through October. The first is just north of Sacramento in northern California. This region is surrounded by the El Dorado,
Mendocino, Plumas and Tahoe National Forests. Of the 6 months from May through October, three of them (June, August,
September) have their largest marked prototype points near Chico and Madera, which are cities found cradled between the forests
north of Sacramento. The remaining 3 months (May, July, October) have their largest prototype fires near San Diego and Orange
Counties in southern California. Another feature well summarized using the prototypes in Figures 4 and 5 is that, from May through
September, the typical sizes of large wildfires in the most dangerous regions in northern and southern California are comparable
within each month. However, in the month of October, the largest prototype fires in the San Diego/Orange County region are vastly
greater than the largest prototype fires in the Chico/Madera region. In fact, for the month of October, the prototype points near
Julian, CA, which is just east of San Diego and is surrounded by the Cleveland National Forest, contains prototypical fires that are
several times greater in burn area than the largest prototypical fires found in northern California.

After an initialization of the combination of potential dates for the beginning of each of the three wildfire seasons, the algorithm
described in Section 3.2 was run. As a result, the start and end dates were found the minimize the cumulative summed difference
from all contributing spatial point pattern realizations for each season to a spatial prototype and size prototype.

Table 1 provides the results of this search for the optimal partitioning of the wildfire seasons in California for K ¼ 4. Each row of
Table 1 provides the optimal partitioning of the data into wildfire seasons, after an iteration of the algorithm. Total summed cost
from eqn (2) has also been provided in Table 1 to illustrate how effective each partitioning of the data was at the end of each
iteration. The algorithm continues to refine until ultimately considering seasonal partitions to the precision of a single day.
One season, which we might call the active or summer wildfire season, is estimated to begin on May 25th and to end on September
26th. The fall season, characterized by fewer but larger wildfires, is estimated to begin on September 27th and to end on November
7th, and the winter wildfire season, characterized by relative dormancy, is estimated to begin on November 8th and to end on
May 24th. These results are consistent with, and more precise and objectively estimated than, conventional estimates of wildfire
seasons, such as those in Schoenberg et al. (2009).

Figure 6 displays the temporal occurrences of the prototype points from the end of April through the beginning of June. Prior to
the end of the relatively dormant season (marked by the left vertical line in Figure 6), which incidentally is just slightly before the
average start date of Memorial Day weekend (marked by the right vertical line in Figure 6), there are far fewer prototype points than
after the start of the active summer wildfire season. Indeed, after the identified starting date for the summer wildfire season, wildfires
of at least 0.0405 km2 occur nearly daily in California.
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The distinction between the seasons is also highlighted in Figure 7, which shows the prototype for each wildfire season. One sees
readily from Figure 7 the extremely high frequency of wildfires during the summer season, the predominance of small fires in the
winter season, especially in northern California, and the tendency toward large wildfires in the fall season, especially in southern
California.

5. DISCUSSION

Prototypes are useful summaries for repeated observations of a point process, can be used for spatial-temporal marked point
processes, and can easily be integrated with clustering algorithms so as to partition realizations optimally. One particular advantage
of prototypes is that they are entirely non-parametric, and in fact they do not even require that the underlying process be stationary
or isotropic. This is a major convenience in the case of California wildfires, which are obviously highly non-stationary in both space
and time, with certain locations and months far more fire prone than others, and strongly non-isotropic, since wildfires are far more
likely to spread in certain directions, for instance in the direction of prevailing ambient winds and toward higher elevations (Pyne
et al., 1996).

It is worth noting that spike-time distance is merely one possible choice for distance between point patterns and, while its
simplicity is attractive, for alternative point processes, especially those exhibiting clustering, other choices of distance functions may
be used (Victor and Purpura, 1997; Mateu et al., 2011).

The results for California wildfires found here are not surprising, and indeed they are more illustrative of the usefulness of
prototypes to summarize the main features in a complex dataset, rather than as means to glean new insights about wildfire activity in
California. The observations that most California wildfires occur in the summer and that the largest wildfires tend to occur in the fall
were in fact known to the Chumash Indians many centuries ago (Pyne et al., 1996). Nevertheless, summaries based on prototypes
may be useful, particularly in the case of quantification or delineation of wildfire seasons. Monthly or annual prototypes may also
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Figure 4. Prototype summaries with mark for January–June. Prototype wildfires are represented by equilateral triangles whose sides
are proportional to log areas. Observed wildfire origin locations are represented by circles
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serve as useful and easily interpretable summaries of expected wildfire activity. Further, for the problems of wildfire forecasting and
the estimation of wildfire burn probabilities based on meteorological variables, which are important for urban planning and for the
preparation of wildfire suppression and emergency response, a key component is the precise delineation of wildfire seasons, since
wildfire hazard models often involve different parameters for different seasons (see e.g. Xu and Schoenberg, 2011). Prototypes may
thus be quite directly useful for wildfire forecasting.

The obvious connection between prototypes and medians has been noted previously (Schoenberg and Tranbarger, 2008; Diez,
2010; Tranbarger and Schoenberg, 2010). Like the median as a descriptor of the center of univariate data, the prototype may be a
useful summary of the central tendency behaviour of a point process, and it is especially useful when the observations are
independent or at least approximately so. In the case of years of wildfire activity, the processes will not be independent, since if a
particular location burns one year, then it is perhaps less likely to burn the next year. The data seem to suggest that for California as a
whole, the overall dependence between years does not seem especially strong. Indeed, Peng et al. (2005) found this dependence for
a particular location to be statistically significant but that, when considering regional wildfire activity as a whole, year-to-year
dependence was a rather weak factor in forecasting wildfire activity.

Table 1. Optimal temporal clustering of California wildfire data into three wildfire seasons

Iteration i t�1; i t�2; i t�3; i

P
Cost

1 4/30 10/31 12/31 6993.26
2 531 9/30 11/30 6654.45
3 5/16 9/30 11/16 6577.35
4 5/24 9/30 11/08 6531.42
5 5/24 9/26 11/08 6438.43
6 5/24 9/26 11/08 6438.43
7 5/24 9/26 11/07 6435.84
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Figure 5. Prototype summaries with mark for July–December. Prototype wildfires are represented by equilateral triangles whose
sides are proportional to log areas. Observed wildfire origin locations are represented by circles
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Figure 6. Prototype points from April 20th to June 10th. Vertical lines represent the estimated end date of the winter season (Left)
and the average date of Memorial Day (Right) from 1990 to 2006. The vertical axis indicates the mean area of the wildfires associated
with each prototype wildfire in the computation of spike-time distance, as described in Section 3.2
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Figure 7. Prototypes for the three delineated fire seasons, using spike-time distance with parameters pa ¼ pd ¼ 1 and pm ¼ 0.3
determined as described in Section 3.2. Prototype wildfires are represented by equilateral triangles whose sides are proportional to
log areas. Observed wildfire origin locations are represented by circles
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Just as the median may be a useful summary and is commonly used even in the presence of some possible minor dependence in
the data, we conjecture that the same may be the case for prototypes for datasets consisting of weakly correlated point-process
realizations, and the impact of such dependence on prototypes is an important direction for future research. Other important tasks
for further exploration include the assessment of the variability in the delineation of wildfire seasons, perhaps using bootstrap
methods, and the study of causal connections between the marks and the times and spatial locations of wildfire occurrences.
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