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Abstract: Radar systems designed to detect avian activity at airfi elds are useful in understanding 
factors that infl uence the risk of bird and aircraft collisions (bird strikes). We used an avian 
radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 
and 2009. We conducted a 2-part analysis to examine relationships among avian activity, 
bird strikes, and meteorological and time-dependent factors. We found that avian activity 
around the airfi eld was greater at times when bird strikes occurred than on average using a 
permutation resampling technique. Second, we developed generalized linear mixed models 
of an avian activity index (AAI). Variation in AAI was fi rst explained by seasons that were 
based on average migration dates of birds at the study area. We then modeled AAI by those 
seasons to further explain variation by meteorological factors and daily light levels within a 24-
hour period. In general, avian activity increased with decreased temperature, wind, visibility, 
precipitation, and increased humidity and cloud cover. These effects differed by season. For 
example, during the spring bird migration period, most avian activity occurred before sunrise 
at twilight hours on clear days with low winds, whereas during fall migration, substantial activity 
occurred after sunrise, and birds generally were more active at lower temperatures. We report 
parameter estimates (i.e., constants and coeffi cients) averaged across models and a relatively 
simple calculation for safety offi cers and wildlife managers to predict AAI and the relative risk 
of bird strike based on time, date, and meteorological values. We validated model predictability 
and assessed model fi t. These analyses will be useful for general inference of avian activity 
and risk assessment efforts. Further investigation and ongoing data collection will refi ne 
these inference models and improve our understanding of factors that infl uence avian activity, 
which is necessary to inform management decisions aimed at reducing risk of bird strikes. 

Key words: airfi eld, avian activity, Beale Air Force Base, bird strikes, collision, human–wildlife 
confl icts, meteorology, migration, radar, weather 

An important goal of airfi eld resource 
managers is to take actions that avoid collision 
between birds and aircraft  (bird strikes), while 
using practices that minimize the loss of avian 
species diversity. Airfi elds oft en are located in 
areas with high avian activity (e.g., suburbs, 
near wetlands). Bird strikes are a major 
concern in California because the entire region, 
and especially the Central Valley, is a major 
breeding, migration, and wintering area for 
Pacifi c Flyway birds (Gilmer et al. 1982, Shuford 
et al. 1998). The aviation industry suff ers an 
annual loss of $1.2 billion due to bird–aircraft  
collisions. These accidents have resulted in 194 
human deaths (Dale 2009) with more than 60% 
of collisions occurring within the vicinity of 

the airfi eld (Dolbeer and Wright 2009). A full 
understanding of links among bird-strike risk, 
bird activity, and environmental factors are 
needed to design actions that reduce monetary 
loss and human fatality or injury caused by 
bird strikes. Statistical inference models of 
avian activity based on time-dependent eff ects 
and meteorological factors at airports would 
be useful in aviation risk management plans, 
especially with regard to fl ight scheduling 
aimed at reducing the probability of bird 
strikes. 

Quantifying the risk of bird strikes is a 
challenging task (Allan 2006, Soldatini et al. 
2010), in large part because of the diffi  culties 
associated with accurately measuring avian 
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activity and also the scarcity of bird-strike 
data. As a result, mechanistic studies that 
clearly defi ne links between bird strikes and 
avian activity are lacking. Data from portable 
avian radar systems can be relatively more 
eff ective than other techniques used to quantify 
avian activity and identify relationships 
with environmental factors and bird strikes. 
One major advantage of using avian radar 
over conventional visual surveys is the 
ability to gather information continuously, 
including surveying both in nocturnal hours 
and conditions during daylight when visual 
observation is not practical (Cooper et al. 
1991). This information is useful because bird 
strikes have been reported at pre-dawn hours 
(Burger 1985), and many birds migrate during 
those hours. Another advantage is that avian 
radar systems can provide information about 
origin, volume, and direction of bird fl ights 
(Russell and Gauthreaux 1998). Other types of 
radar technologies have been useful but have 
limitations. For example, weather radar, such as 
the NEXRAD Doppler system (Kelly et al. 2000), 
has been used as a tool for monitoring avian 
fl ight patt erns for nearly 5 decades (van Belle 
et al. 2007). However, such technologies do not 
off er full coverage in all areas and have limited 
abilities in precision to detect individual birds 
at local scales. Thus, while useful for large-scale 
analyses that identify bird migration and fl ight 
patt erns, weather radar lacks local precision and 
is not always available or useful for managing 
local bird populations at individual airfi elds. 

More recently, radar systems designed for 
local-scale use allow for relatively small but 
highly detailed zones of coverage. For example, 
the MerlinTM avian radar system (DeTect Inc., 
Panama City, Fla.) uses horizontal (S-band) 
and vertical (X-band) radar beams at relatively 
short distances (4 to 12 km) to obtain high 
resolution, which allows estimation of avian 
activity at individual airfi elds. Further, these 
systems target and track individual birds and 
have limited ability to separate targets into 
diff erent size classes, allowing some types of 
organisms to be discriminated (Kelly et al. 
2007). However, well-designed studies are 
needed to fully evaluate the performance of this 
technology to estimate population abundance 
or density. Nevertheless, this radar technology 
serves as a valuable tool to develop indices of 
avian activity.

We carried out a study with 2 major 
objectives at Beale Air Force Base (AFB) in 
California using data collected from 3 sources. 
We obtained avian activity data from the avian 
radar system. We then acquired data of bird 
strikes that were reported at Beale AFB during 
the same time period as radar data from strike 
reports managed by the Bird–Wildlife Aircraft  
Strike Hazard (BASH) team. Lastly, we acquired 
meteorological data from the National Weather 
Service (NWS) during the same time period. Our 
fi rst objective was to develop a statistical model 
that evaluated the relationship between avian 
activity and the occurrence of bird strikes. Our 
second objective was to develop a set of a priori 
models to examine the eff ects of meteorological 
and time-dependent factors on avian activity. 
We used an information theoretic approach 
and cross-validation technique to evaluate 
model support from the data, and we reported 
the estimated averaged model parameters (e.g., 
coeffi  cients). These parameters will be valuable 
to local planning authorities for strategies 
that are aimed at improving fl ight safety and 
reducing costs associated with bird strikes. This 
study provides a baseline for further refi nement 
in estimated parameters and examination of 
additional hypothesized variables as ongoing 
data collection from radar systems becomes 
available. 

Study site
Beale AFB in eastern Yuba County, California, 

in the northeastern portion of the Sacramento 
Valley (UTM 635139 E, 4333045 N, Zone 
10) consists of 9,308 ha of rolling hills at the 
base of the Sierra Nevada mountain range. 
The natural resources on these lands are 
managed by the U.S. Department of Defense 
in cooperation with the U.S. Department of 
Agriculture, Wildlife Services (WS) and the 
U.S. Fish and Wildlife Service. The area is 
primarily composed of grasslands interspersed 
with small areas of riparian vegetation, oak 
(Quercus spp.) woodlands, and seasonal and 
permanent wetlands. Grazing (approximately 
1,500 cows) is carried out in the grasslands on 
approximately 4,450 ha (48% of the total land 
area) during the wet months of the year (i.e., 
November to May). Non-native grasses (e.g., 
Taeniatherum caput-medusae) and forbs (e.g., 
Centaurea solstitialis) dominate portions of the 
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study site. The elevation ranges from 26 to 213 
m, with higher areas near the eastern boundary. 
The average annual temperature is 17°C 
(average minimum = 10, average maximum = 
24). The average annual precipitation is 56 cm, 
with most falling during November through 
March. The climate is characterized by cool, 
wet winters and hot, dry summers.

Beale AFB is an active airfi eld where the 
Ninth Reconnaissance Wing operates the 
nation’s U-2 reconnaissance aircraft . Multiple 
landscape features within or adjacent to the 
base likely contribute to bird fl ight activity. 
For example, Beale AFB abuts the western 
boundary of Spenceville Wildlife Management 
Recreation Area (WMRA), which is a 4,850-ha 
area managed by California Department of Fish 
and Game. The base also consists of a riparian 
preserve (298 ha), open water sites (84 ha), and 
vernal pool conservation areas (405 ha; U.S. 
Army Corps of Engineers 1999), which att ract 
numerous species of waterfowl for roosting, 
feeding, and loafi ng activities (Cain et al. 
2004). Adjacent south and west of Beale AFB 
are expansive agricultural areas, primarily rice 
fi elds where waterfowl and other waterbirds 
are common throughout the year, especially 
during fall and winter (Elphick 2000, Miller et 
al. 2010) when food is abundant. A municipal 
and commercial solid waste landfi ll (103 ha) 
is located within 500 m of the southeastern 
boundary of Beale AFB. This landfi ll aff ects a 
variety of scavenging bird species.

Methods
Avian radar system

An avian radar system (Merlin™) was 

deployed in the approximated center of the 
airfi eld at Beale AFB California, USA, during 
2008 and 2009 (Figure 1a) by personnel from 
DeTect Inc. (Panama City, Fla.). The system was 
fully self-contained and mounted on a trailer, 
developed specifi cally for the U.S. Air Force 
and NASA to continually detect and track birds 
within their airfi elds. The system used high-
resolution industrial surveillance radar that 
emitt ed dual marine radar sensors: horizontal 
and vertical scanning beams. The horizontal 
wide array antenna transmits a 30-kW power, 
S-band (10-cm wavelength) radar beam 
covering a circular area with a radius of 2.0 Nm 
centered on the system. This beam was wedge-
shaped (25°) and scanned the x-y plane. The 
vertical wide array antenna transmits a 25-kW, 
X-band (3-cm wavelength) radar beam with a 
transmission radius of 0.75 Nm. We used data 
from only the horizontal radar (S-band) for this 
study. The rationale for excluding data from 
the vertical radar was to reduce false positives 
that were oft en a result of increased signal 
att enuation associated with X-band wavelength. 
For example, precipitation increased occurrence 
of false positives in the X-band but not the 
S-band radar beams. Additionally, the larger 
wavelength of the S-band allowed us to achieve 
a greater detection range. The horizontal radar 
scanned at a rate of ~2.5 second (rotations) and 
off ered the greatest spatial resolution with the 
lowest sidelobe returns. 

The processing soft ware developed by 
Merlin™ diff erentiated birds from ground 
characteristics and other fl ying objects. 
Parameters were specifi ed for minimum and 
maximum refl ectivity (measure of target 

Figure 1. (a) Aerial photograph of Beale Air Force Base. Images from the avian radar system depicted (b) 
relatively low activity at late dark and (c) high activity at early light. Dots represent individual bird identifi ca-
tion.
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intensity), target size (based on pixel area), and 
target speed to correspond with bird detection 
and minimize false-positives. Other parameters 
that were less important were also specifi ed. 
Raw radar analysis and ground truthing were 
carried out to identify signals of contamination. 
Specifi c areas that contribute to false positive 
objects or noise (e.g., roads with vehicle use) 
were masked from detection throughout 
the duration of the study. Those areas were 
identifi ed before data collection for this study 
and were not changed throughout the study 
period. Insect contamination was removed 
based on size (i.e., area of 8 pixels), whereas 
very small bird species (approximately 7-cm in 
length) could still be detected. Moving aircraft  
were removed based on criteria of ground 
and fl ight speeds. Automated clutt er (e.g., 
ground clutt er from foliage) suppression was 
implemented to identify noise but still allowed 
detection of objects that met the size, speed, 
and refl ectivity criteria. Additionally, a process 
known as constant false alarm rate (CFAR) was 
used to simplify clutt er and make the refl ectivity 
consistent with range, allowing targets to be 
detected while considering variation in ground 
cover.

Following the fi ltering process, fl ying objects 
that met the defi nitions were recorded. A unique 
track identifi cation number (ID) was created 
for an object that had 4 subsequent detections. 
Each subsequent detection for that object was 
assigned a track ID and was calculated using a 
least squares regression technique. Specifi cally, 
the soft ware identifi ed detections that fi t a linear 
track sequence through time by using specifi ed 
parameters (e.g., size) and then assigned a 
unique ID. However, objects with fewer than 
4 detections were not considered fl ying birds 
and were not assigned IDs. Thus, individual 
birds with multiple detections during fl ight 
were processed and recorded as separate track 
IDs. The radar system simultaneously tracked 
every bird (track ID) through time and stored 
the data in an onsite database. Although 
insect and other forms of contamination were 
considerably reduced through operational 
sett ings (specifi ed parameters) and the use of 
S-band radar, additional post-processing steps 
were employed. For example, single track IDs 
consisting of only 4 sequential detections were 
eliminated from the database because those 

oft en represented additional ground clutt er, 
insects, or other forms of interference instead of 
fl ying birds, which accounted for approximately 
10% of the track IDs (Michael Bierman, DeTect 
Inc., personal communication).

This study consisted of 4 important 
assumptions regarding detection of birds. First, 
although contamination by false positives was 
unknown within the quality-fi ltered database, 
the rate was negligible based on extensive false 
positive removal from operational and post-
processing steps. The second assumption was 
that any existing false positive errors were 
spatially and temporally random. Although 
probability of detection slightly decreased 
with increased distance from the radar system, 
the third assumption was that the probability 
of detection at a given distance was constant 
through time. The last assumption was that 
meteorological factors did not aff ect probability 
of detection using horizontal (S-band) radar. 
With these assumptions, avian radar can 
provide a useful index of avian activity. 
Personnel from DeTect Inc. carried out the 
avian radar system set-up, ground operations, 
database development and maintenance, and 
post-processing of database queries.

Avian activity index
We developed an avian activity index 

(AAI) using track IDs detected from the radar 
system in multiple steps. First, the 24-hour 
day was divided into hourly intervals starting 
at midnight (00:00 hours) on January 17, 2008, 
and continuing until 1500 hours on November 
30, 2009. Avian activity indices were then 
calculated for each interval by summing the 
number of bird track IDs detected and tracked 
hourly by the radar. An interval length of 1.0 
hour was chosen as a sampling unit to coincide 
with hourly meteorological data that was used 
in the modeling approach. It was possible for 
an individual bird to represent multiple track 
IDs. For example, a bird that intersected the 
radar beam during fl ight, landed, and then 
intersected the radar beam in a second fl ight 
within the 1-hour interval was assigned 2 
track IDs. For this reason, AAI was developed 
to represent avian activity each interval as a 
function of both movement and abundance. 

The overall objective was to estimate AAI as 
a relative value to examine variation in avian 
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fl ight activity. The objective was not to estimate 
an absolute value for population abundance or 
density because allowing multiple tracks per 
individual per interval would likely bias those 
values. Additionally, because false positive 
errors were assumed to be random, AAI was the 
more appropriate measurement to understand 
relative diff erences between the infl uences 
of explanatory factors. Thus, potential biases 
associated with false positives are negligible 
under the condition that false positives are 
minimal and random. Missing data (<10%) 
which were usually caused by failure of the radar 
system, were not indexed and were excluded 
from the analyses. We conducted 2 separate 
analyses using AAI. We fi rst investigated the 
relationship between activity and bird strikes, 
and then evaluated avian AAI models based on 
time eff ects and environmental variables.

Analysis 1: linking avian activity to bird 
strikes

We obtained records of bird strikes (n = 
26) from Beale AFB from January 17, 2008, to 
November 30, 2009, from the U.S. Air Force 
Bird-Wildlife Aircraft  Strike Hazard (BASH) 
database. These bird strikes were within the 
full range of horizontal radar. We included all 
species of birds in the analysis. We determined 
the hourly interval that each bird strike 
occurred and then collected the corresponding 
AAI for those intervals. Mean and variance of 
AAI for times when bird strikes occurred were 
computed. 

We employed a generalized linear model 
(GLM) and a permutation resampling technique 
(Good 2000) to estimate the eff ects of AAI on 
bird strikes. Specifi cally, we fi rst developed a 
GLM with a binomial distribution and specifi ed 
the predictor variable as AAI value and the 
response (binary variable) as bird-strike interval 
(scored as 1) or all other intervals (scored as 
0). We report the estimated model coeffi  cients 
and interpreted those values as odds ratios. 
Second, we conducted 10,000 permutations of 
the GLM by randomly selecting 26 samples 
without replacement from the full dataset. In 
other words, these were not intervals of known 
bird strikes but were chosen at random. For 
each GLM permutation, the response variable 
consisted of 26 samples (scored as 1) and the 
remainder of the data set (scored as 0). Last, 

we report the percentile along the distribution 
of permutations where the coeffi  cient of the 
analysis with bird-strike interval occurred. 
Because we are evaluating the hypothesis that 
AAI is higher during times of bird strikes than 
on average, we interpreted the results using a 
1-tailed (directional hypothesis) evaluation. 
A similar approach was used to compare the 
mean and variance of AAI during bird-strike 
intervals to AAI mean and variance during 
intervals without known bird strikes. In this 
analysis, we fi rst calculated the mean and 
standard deviation during bird-strike intervals. 
We then conducted 10,000 resamples of 26 AAI 
values from the full data set and calculated 
the means and standard deviations for each 
simulation. We report the percentile of the 
mean and variance of the sampled bird-strike 
data set within the approximated resampled 
distributions.

Analysis 2: modeling avian activity
Explanatory variables. We chose to 

examine variation in AAI based on a priori 
hypotheses regarding time-dependent eff ects 
and meteorological factors. We examined 2 
sources of variation by seasonal eff ects on avian 
activity. The fi rst seasonal eff ect was based on 
migration (MGR). We divided the year into 4 
periods based on general migration patt erns 
of multiple species that inhabited Beale AFB 
and the surrounding area within the Central 
Valley of California. We developed indicator 
variables for the 4 seasons, which consisted 
of fall migration (September 15 through 
November 15), winter (November 16 through 
February 20), spring (February 21 through May 
20), and summer (May 21 through September 
14). As an alternative a priori hypothesis that 
more eff ectively represented seasonal changes 
(e.g., daylight length, vegetation, and climate), 
we examined variation based on the calendar 
seasons (CSN). This variable consisted of 
fall (September 21 to November 20), winter 
(December 21 to March 20), spring (March 21 
to June 20), and summer (June 21 to September 
20).

We examined evidence for variation in AAI 
due to diff erent daily light levels by classifying 
light levels in 2 ways. First, we separated the 
24-hour day into 6 light periods (6LP) by 
grouping the minutes of the day into categories, 



254 Human–Wildlife Interactions 5(2)

comprised of 3 subintervals (i.e., early light 
[EL], mid-light [ML], and late light [LL]), and 
for dark (early dark [ED], mid-dark [MD], and 
late dark [LD]). The intervals were calculated by 
dividing the total minutes of daylight (sunrise 
to sunset) into the 3 groups and those of dark 
(sunset to sunrise) into the 3 groups during 
the 24-hour day using sunrise and sunset 
data (U.S. Navy Observatory, Astronomical 
Department, Washington, D.C.). We grouped 
each day separately because of diff ering lengths 
of daylight through the year. We used only 1 
randomly assigned hourly sampling interval 
for each group per day for our analyses to 
prevent temporal autocorrelation and to meet 
the assumption of independence. If a sampling 
interval consisted of minutes from 2 categories, 
then we assigned the category with the greatest 
number of minutes. We also evaluated a less 
complex light patt ern eff ect by specifying an 
indicator variable for 2 light periods (2LP) by 
reassigning 1 category as intervals between 
sunrise and sunset (light) and the other 
between sunset and sunrise (dark). The same 
randomly chosen intervals were used for this 
categorization. 

We acquired meteorological data from the 
weather station at Beale AFB (U.S. National 
Climate Data Center, Asheville, N.C.). These 
data consisted of wind speed (mph), visibility 
(statute miles), relative humidity (%), ambient 
temperature (°C), precipitation (binary variable, 
0 = no precipitation, 1 = precipitation), and cloud 
cover. Cloud cover consisted of 5 cover classes: 
clear (no clouds), few (1 to 25% cloud cover), 
scatt ered (26 to 50%), broken (51 to 75%), and 
overcast (76 to 100%). Variables were selected 
for this analysis based on a priori hypotheses of 
meteorological factors that have been thought 
to infl uence bird activity reported in the 
literature (Meinertzhagen 1955, Baldassare and 
Bolen 1984, Cain et al. 2004). We assigned each 
hourly time interval with the averaged value for 
each meteorological variable based on hourly 
data. To prevent multicollinearity in predictive 
models, we conducted correlation tests to 
exclude variables that co-varied (r ≥ |0.65|).

Model development. We took a 2-step approach 
to identify the most parsimonious inference 
models of AAI. In step 1, we determined whether 
or not a unique model would be developed for 
each season by comparing multiple models 

with diff erent seasonal and light patt ern 
eff ects. We used linear mixed eff ects models so 
that random eff ects could be specifi ed, which 
accounted for variation that may otherwise 
confound the fi xed eff ects (Faraway 2006, 
Gillies et al. 2006, Zuur et al. 2009). All models 
consisted of the logarithmic function of AAI 
as a response variable and a random intercept 
for year (i.e., random eff ect), but they diff ered 
by the structure of the fi xed eff ects. The model 
notation took the form of:

y = Хβ + γi + ε

where y is the vector of avian activity, X is a 
matrix containing the fi xed eff ects regressors, 
β is a vector of fi xed eff ects parameters, γi 
represents normally distributed random eff ects 
for year i = 1 and 2, and ε is a vector of normally 
distributed errors. The fi rst candidate set of 
models consisted of 6 models with diff erent light 
and seasonal fi xed eff ects (variables are listed 
in Table 1). We randomly sampled 1 interval 
within each light period per day, obtaining 6 
samples each day. Three models consisted of 
additive fi xed eff ects (e.g., 6LP + MGR) and 3 
models consisted of interactions (e.g., 6LP × 
MGR). The additive models represented the 
hypotheses that daily light periods and seasons 
explain variation in AAI, but the eff ect of light 
patt ern is independent of season. The diff erences 
among the additive models were based on the 3 
possible combinations of light periods (2LP and 
6LP) and seasonal eff ects (MGR and CSN). The 
interaction models represented the hypothesis 
that the infl uence of light level periods was 
dependent on seasonal eff ects. The diff erence 
among the 3 interaction models was based on 
combinations of each type of light and season 
variables. 

We evaluated evidence of support for the 6 
models using diff erences in the information 
criterion (∆AIC; Akaike 1971) with second-order 
bias correction (denoted as c; Anderson 2008). 
We calculated model probabilities (w; Anderson 
2008) and compared the most parsimonious 
model (model i) to other models (model j) in 
the model set using evidence ratios (ER = wmodel 

i/wmodel j). At this stage of the model process, we 
specifi ed maximum likelihood estimation to 
make unbiased comparisons among models 
(Zuur et al. 2009). During step 1, we included 
all the meteorological variables in the 6 models 
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to prevent confounding eff ects. The rationale 
for this full inclusion was to prevent bias in 
the evidence for time-dependent eff ects by 
allowing variation to be explained by other 
variables of interest 
(Zuur et al. 2009). If 
we found support 
for an interaction 
between season and 
light patt ern, then, in 
step 2, we modeled 
meteorological and 
light variables within 
each season. This 
2-step approach was 
necessary for multiple 
reasons. First, it 
allowed us to evaluate 
the hypothesis that 
the magnitude of a 
light period eff ect 
diff ers by season. 
Second, it allowed 
us to investigate 
evidence for diff erent 
seasons and light 

periods before exploring meteorological 
factors. Lastly, and perhaps most importantly, 
this 2-step process was thought to facilitate a 
relatively simple interpretation of the parameter 

Figure 2. Distribution of avian activity indices computed using 10,000 resampled 
means (solid line) and mean avian activity index during bird strikes (dashed 
line)—from data collected using avian radar system at Beale Air Force Base in 
the Central Valley of California during 2008 and 2009.

Table 1. Explanatory variables for mixed eff ects models of avian activity indices using data col-
lected from an avian radar system at Beale Air Force Base in the Central Valley of California during 
2008 and 2009.

Eff ects Abbreviation Explanatory 
variable

Type Treatment

Weather         PRC Precipitation (yes or no) ordinal fi xed
SKY Sky condition (5 categories: clear [no 

cover], few [<25%], scatt ered broken 
[50–75%], overcast [100%])

nominal fi xed

WND Wind speed (mph) continuous fi xed
VSB Visibility (statute miles) continuous fi xed
TMP Ambient temperature (°C) continuous fi xed

Time YR Year ordinal random
MGR Season based on timing of general 

migration of most species within the 
area

ordinal fi xed

CSN Season based calendar date ordinal fi xed
2LP 2-category light periods (light 

[sunrise to sunset], dark [sunset to 
sunrise])

ordinal fi xed

6LP 6-category light periods (EL = early 
light, ML = mid-light, LL = late light, 
ED = early dark, MD = mid-dark, LD 
= late dark)

ordinal fi xed
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estimates (i.e., coeffi  cients) for fl ight planning 
authorities and wildlife managers. The light 
level period eff ect (2LP versus 6LP) that was 
found to have the most support was included 
in all models during the second step.

In step 2, we identifi ed the most parsimonious 
model using an exploratory approach for each 
season that included meteorological and light 
level period eff ects. First, we included all the 
explanatory variables into 1 model for each 
season. We then removed variables that lacked 
support from each seasonal model until the 
most parsimonious models were identifi ed 
using a modifi ed information-theoretic-based 
technique described in Zuur et al. (2009). Within 
this procedure a series of steps were carried 
out. We started with a full model and dropped 
1 term at a time to develop alternative models. 
Those models were compared to the full model 
using likelihood ratio tests (approximated by χ2 
distribution) and ∆AICc. The alternative model 
with the lowest AICc was retained and the 
process repeated. A single term was eliminated 
through each sequence until the AICc could not 
be improved and the most parsimonious model 
was identifi ed. The purpose of this approach 
was to account for the tradeoff  between bias and 
variance in identifying the least complex but 
most explanatory model. Maximum likelihood 
estimation was specifi ed for model comparison 
(Zuur et al. 2009). Although identifying the most 
parsimonious model in step 2 was exploratory, 
we based the terms in these models on factors 
that were thought to infl uence avian activity (a 
priori hypotheses). 

Once the most parsimonious model was 
identifi ed, we refi t the models using restricted 
maximum likelihood to avoid biases in 
parameter estimation (Zuur et al. 2009). To 
account for similar evidence among models, 
we averaged the parameter estimates across 
models using model probabilities (Anderson 
2008). We assessed model fi t for the fi nal 
seasonal models using 3 analyses. First, we 
conducted likelihood ratio tests (specifi ed χ2 
distribution) between the most parsimonious 
model and a null model (random eff ect only) to 
compare model fi ts (Zuur et al. 2009). Second, 
we calculated likelihood R2 values (Magee 1990, 
Kramer 2005) for the most parsimonious model 
to indicate the amount of explained variation by 
the time-dependent and meteorological eff ects. 

Lastly, we carried out a v-fold cross-validation 
technique (Burnham 1989) to estimate the 
prediction error. Specifi cally, we fi rst grouped 
the data into 10 random subsets, and then fi t 
the model aft er removing each subset in turn 
(50 simulations), and measured the diff erence 
between observed and expected values for 
the excluded subset. We reported the mean 
prediction error and standard deviation of 
the simulations. We also reported number of 
model parameters, log-likelihood, AICc values, 
and model probabilities for each of the most 
parsimonious seasonal models. The estimated 
constant (β0) and regression coeffi  cients (β1…p) 
associated with the best-approximating model 
were reported. All variables in models within 2 
AICc units from the most parsimonious model 
were considered to have support by the data 
(Arnold 2010). We reported values as means 
± SE. All statistical analyses were conducted 
using Program R (model parameter estimation, 
“lme4” package, Bates et al. 2008; cross-
validation, “boot” package, Canty and Ripley 
2011; R Development Core Team 2008). 

Results
Analysis 1: linking avian activity to 
bird strikes

We found evidence that AAI infl uenced the 
odds of a bird strike. Using the model parameter 
estimate, a 1,000-unit increase in AAI increased 
the odds of a bird strike by 8.3% (coeffi  cient 0.08 
± 0.04). Therefore, the odds of a bird strike was 
18.7% higher at a value that represented the 
third quartile (AAI = 3,642) than the value that 
represented the fi rst quartile (AAI = 1,385) of the 
full data set. Using the permutation resampling 
technique, we found the coeffi  cient intersected 
the distribution at the 95.3 percentile (Exact P < 
0.05), indicating that this model coeffi  cient was 
signifi cantly higher than those of the resampled 
permutations. The distribution of resampled 
coeffi  cients was centered on zero, and 95.3% 
of the resampled coeffi  cients fell below the 
mean value of AAI during a bird strike. The 
permutated distribution revealed a reasonably 
symmetrical shape, indicating a lack of evidence 
for bias in interpreting percentiles. During the 
intervals when bird strikes occurred, the AAI 
(4,112.9 ± 536.5) was substantially greater than 
the majority of resampled means from the full 
AAI dataset (Figure 2). The mean AAI during a 
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bird strike was at the 95.4 percentile (Exact P < 
0.05) of the overall sampling distribution. The 
AAI variance during bird-strike intervals was 
at the 56.2 percentile of the distribution of the 
resampled interval variances, which indicated 
no evidence of diff erence between AAI variance 
during a bird strike compared to the resampled 
variances.

Analysis 2: modeling avian activity
Model selection. In step 1, we found strong 

diff erences in evidence of support between 
the light period and season time-dependent 
models (Table 2). The most parsimonious 

model consisted of an interaction between 6LP 
and MGR (w model 1 = 1.0), meaning that the eff ect 
of light period varied among seasons (Figure 
3). Most notably, avian activity indices during 
EL of the 2 seasons of fall migration (7,682.7 
± 289.5) and winter (8,297.0 ± 563.5) were 
substantially greater than indices during LD of 
the same seasons (fall, 3,776.6 ± 283.9; winter, 
724.9 ± 43.5). However, avian activity indices 
during LD of the spring migration (4,363.4 ± 
495.4) was greater than EL (2,974.0 ± 107.5) 
during spring. Thus, avian activity was greater 
before sunrise during spring migration but 
greater aft er sunrise during fall migration and 

winter. Also, we identifi ed the most 
variation in activity by light periods 
within the winter months (see radar 
image in Figure 1b and c). Avian 
activity was highest during EL of fall 
migration and lowest during LD of 
winter. The least amount of variation 
among light periods occurred 
during summer season (Figure 3), 
which showed relatively low values 
of AAI.

Grouping seasons based on 
average migration dates was more 
informative than by calendar dates 
based on comparing model 2 (6LP × 
CLN) to model 1 (6LP × MRG; Table 
2). Although model 2 had much 

Figure 3. Interaction between 6-period light pattern and migration-based season at Beale Air Force Base in 
the Central Valley of California during 2008 and 2009. Vertical lines represent 95% confi dence intervals.

Table 2. Evidence of model support for light patt ern and 
time-dependent eff ects on avian activity indices from data 
collected using an avian radar system at Beale Air Force Base 
in Central Valley of California during 2008 and 2009. k = 
number of parameters, LL = log-likelihood, 

No. Modela K LL ΔAICc w
1 6LP × MGR 36 -264.5 0 1.0

2 6LP × CSN 36 -331.7 134.5 0.0
3 2LP × MGR 25 -734.6 910.4 0.0
4 6LP + MGR 21 -742.6 926.3 0.0
5 6LP + CSN 21 -862.3 1163.8 0.0

a  Meteorological explanatory variables were included in each 
model to prevent bias in evidence for light patt ern and sea-
son eff ects. Number of samples was 3,659 (101.6 samples per 
parameter for most complex model). 6LP = 6-category light 
period, 2LP = 2-category light period, MGR = migration-
based season, and CSN = calendar-based season. 
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greater support than the null model (without 
seasonal eff ects), we did not fi nd evidence that 
this model had greater support than model 1 
(Table 2, model 2, ∆AICc = 134.5, w model 2 = 0). 
We also found that grouping light periods into 
6 categories rather than two explained more 
variation in AAI. This diff erence was evident 
in comparing model 3 (2LP × MRG) to model 
1 (6LP × MRG). Model 3 had substantially less 
support from the data (Table 2; model 3, ∆AICc 
= 910.4, w model 3 = 0).

In step 2, we developed avian activity 
models that consisted of 6LP and also included 
meteorological factors as additive eff ects. The 
rationale for modeling each season separately 
was to reduce model complexity to assist in 
interpreting the estimated parameters, based 
on the interaction eff ect identifi ed in step 1. 
We found seasonal variation in the eff ects 
of multiple meteorological factors. During 
the fall migration, the most parsimonious 
model consisted of cloud cover, temperature 
(quadratic function), precipitation, wind, and 

light period as explanatory variables (Table 
3, model 3). In assessing model fi t, this model 
performed substantially bett er than a random-
eff ect only model (χ2 = 429.7, df = 13, P < 0.001) 
and explained a reasonable amount of variation 
(R2

LR = 0.41). We found that mean prediction 
error of 50 simulations was 0.0673 (SD = 0.0004) 
using cross-validation.

Avian activity during fall tended to be 
greatest at approximately 6 to 15°C (Figure 4a). 
Aft er this temperature range, activity decreased 
with increasing temperatures. Increased wind 
speed (mph) and precipitation were associated 
with less AAI (Figure 4b and c). We found that 
avian activity was substantially greater during 
clear skies, and AAI decreased as cloud cover 
increased (Figure 4d). The global model (Table 
3, model 1), which included humidity and 
visibility, had less support from the data (∆AICc 
= 1.7, w model 1 = 0.21) than the most parsimonious 
model (w model 3 = 0.50). Model 3 was 2.3 times 
(w model 3/w model 1) more likely to be bett er than 
the global model. Model 3 was also 1.7 times 

Table 3. Variable reduction procedure for seasonal models of avian activity index at Beale 
Air Force Base in Central Valley, California, during 2008 and 2009. (k = number of pa-
rameters, n = sample size, AICc = Akaike’s Information Criterion with second order bias 
correction, LL = log-likelihood, w = model probability)

Season Model Iterationa Covariateb k n LL ΔAICc w
Fall   1 1 - 17   798   -36.7 1.7 0.21

  2 2 HMD 16   798   -37.3 1.1 0.29
  3 3 VSB 15   798   -37.7 0.0 0.50

Winter   4 1 - 17   747    74.7 3.7 0.01

  5 2 WND 16   747    74.7 1.7 0.09
  6 3 TMP2 15   747    74.5 0.2 0.40
  7 4 SKY 14   747    69.5 0.0 0.50

Spring c   8 1 - 17   878 -135.1 0.0 0.54
  9 2 VSB 16   878 -136.2 0.3 0.46

Summer 10 1 - 17 1236   151.4 8.2 0.01
11 2 SKY 16 1236   150.3 2.4 0.17
12 3 PRC 15 1236   149.7 1.6 0.25
13 4 VSB 14 1236   149.5 0.0 0.57

a  Iteration was conducted to remove variables that lacked evidence of support from the 
data. Iteration 1 consisted of the global model that included cloud cover, temperature 
(quadratic), precipitation, humidity, wind visibility, and a 6-period light patt ern.
b  Covariate removed from models based on likelihood ratio test between nested models 
(Zuur et al. 2009). No variables were removed in iteration 1. SKY = cloud cover, WND = 
wind speed (mph), VSB = visibility (statute miles), HMD = relative humidity (%), TMP = 
ambient temperature (°C).
c Although similar evidence was found for spring models 8 and 9, model 9 was chosen 
based on “pretending variable” eff ect (Anderson 2008). 
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more likely to be bett er than a model consisting 
of the same additive eff ects as model 3 but with 
visibility (Table 3, w model 2 = 0.29). 

A parsimonious model during the winter 
months consisted of temperature (linear 
eff ect), humidity, precipitation, visibility, and 
6LP (Table 3, model 7). This model performed 
substantially bett er than a null model (χ2 = 
1065.5, df = 9, P < 0.001) and explained the 
greatest amount of variation compared to other 
seasonal models (R2

LR = 0.76). Using the cross-
validation technique, the mean prediction 
error was 0.05 (SD = 0.0001) during this season. 
Increased avian activity was associated with 
lower temperatures and visibility (Figure 
5a and c). Avian activity was greater during 
times with increased humidity (Figure 5b) 
and no precipitation (Figure 5d). The global 
model, which included temperature (quadratic 
function), wind speed, and cloud cover, had 
substantially less support from the data (Table 
3, ∆AICc = 3.7, w model 4 = 0.01) than the most 
parsimonious model (w model 7 = 0.50). Model 7 
was 6.4 times (w model 7/w model 4) bett er than the 

global model. A model that also included sky 
cover had less support from the data (∆AICc = 
0.2, w model 6 = 0.40). Increased cloud cover was 
associated with less avian activity.

We found that the most parsimonious model 
during the spring migration consisted of all 
variables except visibility (Table 3, model 9), 
which were cloud cover, temperature (quadratic 
function), humidity, wind, precipitation, and 
6LP. Removal of any 1 of the 6 explanatory 
variables resulted in a higher AICc value. 
The spring model fi t those data substantially 
bett er than a null model (χ2 = 243.5, df = 14, P < 
0.001) and explained a relatively high amount 
of variation compared to other seasonal 
models (R2

LR = 0.51). By cross-validation, mean 
prediction error was 0.0828 (SD = 0.0004) 
during spring. A global model had nearly 
equal support from the data (Table 3, w model 8 
= 0.54). During the spring, a strong quadratic 
relationship revealed less activity during low 
and high temperatures (Figure 6a). Avian 
activity appeared to be greatest at 16 to 25°C. 
Low activity was associated with increased 

Figure 4. Effects of (a) temperature, (b) wind speed, (c) precipitation, and (d) sky condition on avian activity 
indices during the fall migration season at Beale Air Force Base in the Central Valley of California during 
2008 and 2009. Vertical bars represent 25th to 75th percentiles for continuous variables (a and b) and 
standard error for categorical variables (c and d). Lines represent predicted values from the equation of the 
most parsimonious model. Lines may not appear to fi t raw data because of back transformation from the 
logarithmic function, and all additive effects were included in the model. Continuous variables were held 
constant at the mean values and the most frequent group was used for categorical variables.
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wind and precipitation (Figure 6b and d) and 
decreased humidity (Figure 6c). Less activity 
was associated with cloud cover (Figure 6e). 

 The most parsimonious model during the 
summer season consisted of temperature 
(quadratic function), wind, humidity and 6LP 
(Table 3, model 13). This model was supported 
by the data substantially bett er than a null model 
(χ2 = 522.0, df = 9, P < 0.001). Although explained 
variation by this model was lower than other 
seasonal models, the model represented a 
reasonable amount of variation (R2

LR = 0.34). 
Mean prediction error for the summer model was 
0.050 (SD = 0.0001). In interpreting parameter 
estimates, we found evidence for a quadratic 
eff ect, where the temperature range with the 
greatest avian activity was approximately 16 to 
25°C (Figure 7a), and less activity was found at 
temperatures lower and higher than this range. 
Also, increased wind speed was associated with 
less activity (Figure 7b). The global model did 
not have support from the data (Table 3, ∆AICc 
= 8.2, w model 10 = 0.01) compared to the most 
parsimonious model (w model 13 = 0.57). However, 

a model with all of the same additive eff ects as 
the most parsimonious model that included 
visibility showed support from the data (model 
12, ∆AICc = 1.6, w model 12 = 0.25) but less than 
model 13 (Table 3). 

Model implementation. To facilitate 
interpretation, we provided 2 ways to apply 
the results of these analyses: (1) a general 
interpretation of light patt ern and season eff ects 
without including meteorological data and (2) 
a more specifi c model implementation using 
forecasted weather information. The reason for 
the former was a matt er of convenience on the 
part of the safety offi  cer or resource manager, 
mostly because of time limitations and 
unavailability of forecasted weather, while the 
reason for the latt er was to predict avian activity 
with a relatively greater degree of accuracy 
and precision. For the former application, we 
classifi ed the light periods into 3 categories 
related to a relative risk of bird strike (i.e., low, 
medium, and high) during aircraft  fl ights. Light 
periods scored as high risk met 2 criteria: (1) the 
95% CI of the mean did not include the mean 

Figure 5. Effects of (a) temperature, (b) humidity, (c) visibility and (d) precipitation on avian activity indices 
during the winter season at Beale Air Force Base in the Central Valley of California during 2008 and 2009. 
Vertical bars represent 25th to 75th percentiles for continuous variables (a and b) and standard error for cat-
egorical variables (c and d). Lines represent predicted values from the equation of the most parsimonious 
model. Lines may not appear to fi t raw data because of back transformation from the logarithmic function 
and all additive effects were included in the model. Continuous variables were held constant at the mean 
values and the most frequent group was used for categorical variables.
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during bird strike and (2) the mean activity 
during light period was greater than the mean 
activity during bird strike. Those light periods 
scored as medium risk met 1 criterion: 95% CI 
of mean activity during light period included 
the mean activity during bird strike. Light 
periods scored as low risk met 2 criteria: (1) the 
95% CI of the mean did not include the mean 
during bird strikes and (2) the mean activity 
during light period was less than the mean 
activity during bird strikes. The high-risk group 
consisted of EL during the fall migration and 
EL and ED (5,082.7 ± 440.4) during the winter. 
The medium risk group consisted of MD and 
LD during spring (3,744.6 ± 723 and 4,363.4 ± 

971.0, respectively) and fall migration (3,706.1 ± 
520.5 and 3,776.6 ± 556.5, respectively) and ML 
during winter (3,514.3 ± 665.1). All other light 
periods were classifi ed as low risk.

The latt er application was more specifi c 
and preferred and entailed using the derived 
inference models to predict avian activity based 
on season, light patt ern, and meteorological 
characteristics. This was a superior approach 
because it accounted for additive eff ects among 
light patt erns and meteorological variables. 
Inference using this technique was a 2-step 
process. Forecasted model-averaged values of 
light patt ern and weather were inputt ed for 
any given interval of interest into the model 

Figure 6. Effects of (a) temperature, (b) wind speed, (c) humidity, (d) precipitation, and (e) sky condition 
on avian activity indices during the spring migration season at Beale Air Force Base in the Central Valley of 
California during 2008 and 2009. Vertical bars represent 25th to 75th percentiles for continuous variables (a, 
b, and c) and standard error for categorical variables (d and e). Lines represent predicted values from the 
equation of the most parsimonious model. Lines may not appear to fi t raw data because of back transforma-
tion from the logarithmic function and all additive effects were included in the model. Continuous variables 
were held constant at the mean values and the most frequent group was used for categorical variables.
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equations (Figure 8). The resulting AAI value 
then was related to the mean and 95% CIs of the 
sample distribution of activity during intervals 
when bird strikes occurred. An interval was 
scored relatively high risk if the predicted AAI 
value was greater than or equal to the mean AAI 
during intervals with bird strikes (i.e., ≥4,112.9). 
An interval was scored as medium risk if the 
AAI value was between the mean and the lower 
limit of the 95% CI of AAI at intervals with 

bird strikes (i.e., >3,061.5 and <4,112.9). Lastly, 
an interval was scored as relatively low risk 
intervals if the predicted AAI value was below 
the lower limit of the 95% CI. For example, 
consider that cloud cover was approximately 
15%, temperature is 28°C, no precipitation, 
humidity was 22%, wind speed was 5 mph, the 
period was late dark (before sunrise) during 
the spring migration. According to the spring 
equation (Figure 8, Equation C), the logarith-

Figure 7. Effects of (a) temperature and (b) wind speed on avian activity indices during the summer season 
at Beale Air Force Base in the Central Valley of California during 2008 and 2009. Vertical bars represent 
25th to 75th percentiles. Lines represent predicted values from the equation of the most parsimonious model. 
Lines may not appear to fi t raw data because of back transformation from the logarithmic function and all 
additive effects were included in the model. Continuous variables were held constant at the mean values 
and the most frequent group was used for categorical variables.

Figure 8. Averaged model parameters of bird activity by season based on daily light patterns and meteoro-
logical factors at Beale Air Force Base in the Central Valley of California during 2008 and 2009. To facilitate 
interpretation, random intercept for year was not included. SKY = cloud cover, WND = wind speed (mph), 
VSB = visibility (statute miles), HMD = relative humidity (%), TMP = ambient temperature (°C), EL  = early 
light, ML = mid light, LL = late light, ED = early dark, MD = mid dark, LD = late dark.
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mic function of avian activity was computed 
as: 2.684 + 0.018 (<25% cloud) + 0.067 × 28 
(temperature) ⁻0.001 × 282 (quadratic function 
for temperature) + 0 (no precipitation) + 0.003 
× 22 (humidity) ⁻ 0.010 × 5 (wind speed) ⁻ 0.101 
(late dark period) = 3.709. By calculating 103.709, 
the value was back transformed to a predicted 
AAI of 5,117. Because this value was greater 
than the mean AAI during a bird strike, aircraft  
fl ight during this time interval ws relatively 
high risk.

Discussion
We used a portable avian radar system to 

investigate links in avian activity, bird strikes, 
and time-dependent and meteorological 
factors. This study provided useful statistical 
inference models with environmental covariates 
using an hourly sample unit that explained 
substantial variation in avian activity. The 
relatively fi ne-scale of inference throughout 
a 24-hour day could not have been achieved 
with conventional fi eld survey methods. For 
example, surveys conducted in the fi eld oft en 
are limited by sample size, sampling duration, 
sampling area, inter- and intra-observer errors, 
and detection probabilities that vary through 
time (Celis-Murillo et al. 2009). Further, aircraft  
oft en fl y during hours of darkness when 
inferences derived from data generated by 
radar technology are essential. 

Modeling an avian activity index at the 
local scale as demonstrated here is an eff ective 
approach to mitigate the risk of bird strikes. 
Avian activity index is more informative than 
estimating abundance or density because 
activity naturally accounts for variation in the 
amount of movement by individuals. To develop 
an avian activity index, data must be collected 
directly at airfi elds using methods that result in 
continuous fi ne-scale measurements, such as 
the portable avian radar system. Understanding 
local scale activity is important because 74% 
of bird strikes occur at ≤150 m above ground 
level (Dolbeer 2006) and majority of strikes are 
near airports (Burger 1985). Further, 66% of 
low altitude strikes cause substantial damage 
(Dolbeer 2006). Airports are usually in rural or 
suburban sett ings and oft en adjacent to wetland 
environments that consists of open water areas, 
which have been shown to strongly infl uence 
abundance of waterfowl and other water birds 

(Bell et al. 1997, Hart et al. 2009).
We found that most activity occurred during 

the crepuscular periods of fall migration and 
the winter season, which coincides with feeding 
behavior of multiple species of ducks and geese. 
The Central Valley supports about 60% of the 
waterfowl within the Pacifi c Flyway during the 
winter (Miller 1985). Annually, 10 to 12 million 
waterfowl and hundreds of thousands of other 
water birds will fl y into the valley (Gilmer 
et al. 1982). Variation in waterfowl activity 
recently has been reported as a signifi cant bird-
strike hazard at Beale AFB, and this variation 
appears to be related to their foraging strategies 
(Cain et al. 2004). For example, rice fi elds, 
especially those fl ooded aft er harvest to aid in 
decomposition of rice straw, provide a valuable 
winter food source for waterfowl during 
September through March. Many airfi elds were 
adjacent to rice fi elds in the Central Valley near 
Beale AFB, and waterfowl frequented rice fi elds 
(Cain et al. 2004). Agriculture has been shown 
elsewhere to att ract birds and increase bird 
activity within airfi elds (Elphick and Oring 
1998, Kuenzi and Morrison 1998, Sodhi 2002, 
Cain et al. 2004).

Northern pintails (Anus acuta; hereaft er, 
pintails) probably are of particular importance 
in explaining variation in activity based on 
their abundance and daily foraging behavior. 
California regularly winters >50% of the pintail 
population in North America (Bellrose 1980), 
and these birds feed nocturnally and return to 
open water sites for loafi ng and roosting during 
morning hours (Miller 1985). Flights by pintails 
to feeding grounds during the winter months 
occur approximately 30 minutes aft er sunset 
(Miller 1985, Cox and Aft on 1996), which was 
consistent with our fi nding that activity was 
relatively high in the early period of darkness 
in December. Many other waterfowl species, 
including Canada goose (Branta Canadensis; 
Raveling et al. 1972), greater white-fronted 
goose (Anser albifrons; Ely 1992), mallard (A. 
platyrhynchos; Meissner and Remisiewics 
2008), and green-winged teal (A. carolinensis; 
Tamisier 1976) also are common in the Central 
Valley and frequently have been reported to 
conduct forage-related fl ights during morning 
and evening hours. These birds appear to 
reduce their activity during midday and 
night. Additionally, our fi ndings using radar 



264 Human–Wildlife Interactions 5(2)

are consistent with another study that found 
waterfowl numbers were greatest during 
morning hours using visually-based point 
surveys at Beale AFB during winter (Cain et al. 
2004). Other airfi elds located within landscapes 
dominated by agriculture or wetlands likely 
experience similar time-dependent patt erns, 
as shown here, based on feeding patt erns of 
Anatidae species. 

We found that most meteorological factors 
explained variation in avian activity, and we 
identifi ed diff erences between these eff ects 
among seasons. Perhaps one of the most 
important fi ndings related to risk of bird 
strikes was the apparent negative relationship 
between visibility and avian activity in the 
winter season. The amount of time spent fl ying 
in a 24-hour period by waterfowl species in the 
Central Valley is thought to increase with less 
visibility, especially caused by fog, because birds 
likely have diffi  culty identifying food sources 
and loafi ng areas. Waterfowl are thought to 
gradually fl y above the fog line until they locate 
clear areas to land, oft en aggregating into larger 
fl ocks. This may not always be the case with 
species other than waterfowl (Meinertzhagen 
1955). For example, herring gulls (Larus 
argentatus) have been shown to fl y below fog 
during periods of low visibility (Williams et al. 
1974). Nevertheless, most waterfowl are large-
bodied birds with powerful fl ight that oft en 
leads to ascent during fog conditions. With low 
visibility, pilots might be less likely to detect 
and avoid fl ocks of birds. Aircraft  fl ight during 
low visibility, especially early morning hours of 
winter, is perhaps the riskiest time for aircraft  
to encounter birds. 

The variation in temperature (i.e., quadratic 
and linear) among seasons may be partly 
explained by diff erences in responses by bird 
communities that occupy the Central Valley. 
Because waterfowl and other large-bodied 
waterbirds are generally most abundant 
during winter, patt erns in time budgets by 
waterfowl species likely explain the linear 
relationship during this season. For example, 
cold temperatures have been shown to 
be associated with early morning feeding 
departures by mallards and other waterfowl 
(Jorde et al. 1983, Baldassare and Bolen 1984). 
The positive increase we observed at the lower 
temperature range during summer and fall and 

spring migrations may be partly explained by 
the behavior of birds other than waterfowl that 
are sensitive to daily variation in temperature. 
For example, shorebirds and passerines tend 
to be less active during relatively cold weather 
conditions than waterfowl, perhaps because of 
low prey availability (Shuford et al. 1998) and 
greater energy demands (Evans 1976).

Aviation safety offi  cers and resource 
managers could use the avian activity inference 
models developed here to bett er understand 
risk associated with bird strikes. For example, 
these models could serve as a useful tool 
to schedule fl ights, in advance, based on 
information regarding the timing and weather 
forecast. However, diff erences in the usefulness 
of these models likely exist between military 
and civil airports. For example, military fl ights 
are largely based on training exercises, and 
scheduling is relatively fl exible. Use of these 
models by civil aviation safety offi  cers may 
be limited because fl ights are scheduled in 
advanced and generally fi xed.

Manipulation of airport landscapes can be a 
useful means to discourage bird activity and 
reduce the risk of bird strikes (Linnell et al. 2009, 
Blackwell et al. 2009, Hart et al. 2009, Hoehn et al. 
2009). Adjusting aircraft  fl ight schedules using 
inference models could be used in conjunction 
with land planning actions or, in some cases, 
as an eff ective alternative to mitigate risk of 
bird strikes while maintaining biodiversity. For 
example, in some circumstances discouraging 
the protection and enhancement of general 
land cover types (e.g., permanent wetland) that 
serve as habitat for specifi c avian species and, 
thus, support population growth counteract 
the resource manager’s stewardship mission 
aimed at enhancing wildlife populations and 
their habitats. Removal or modifi cation of land 
cover is particularly detrimental to species 
where habitats at airports contribute to source 
populations (Brown et al. 2001). For example, 
a loss of those habitats for source populations 
may disrupt source-sink metapopulation 
dynamics and lead to population declines at 
larger spatial scales (Blackwell et al. 2009). 

A recent review indicated that guidelines 
produced for land planning at airports are 
generally not supported by scientifi c studies 
and oft en do not consider bird collision hazards 
(Blackwell et al. 2009). The integrated natural 
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resource management plan for Beale AFB 
(U.S. Army Corps of Engineer 1999) consists 
of actions directed at protecting wetlands and 
enhancing multiple areas that benefi t wildlife 
species including annual grasslands with 
vernal pools, riparian deciduous woodland, 
and marshes. Additionally, 12 bird species 
that occur at Beale AFB are considered special-
status fi sh and wildlife species, and 7 habitat 
conservation areas are designed to increase 
biodiversity. Actions of conservation must 
coincide with those that reduce the risk of bird 
strikes to meet common goals by land stewards 
and aviation safety offi  cers. 

Successful airport management and 
planning that focuses on minimizing bird-
strike hazards should incorporate multiple 
types of information regarding bird-strike 
hazards. These include (1) high-quality bird 
strike data, (2) diff erential use in land cover 
type by seasonal demographic cycle (Blackwell 
et al. 2009), (3) fl ight frequency of diff erent 
types of aircraft , and (4) bird activity patt erns 
(as a function of abundance and movement) as 
related to time-dependent and meteorological 
factors. Additionally, implementing buff er 
areas that are thought to allow avoidance of 
aircraft  by birds at the landscape and patch scale 
likely contributes to conservation planning for 
non-hazardous species (Blackwell et al. 2009). 
Although implementing the inference models 
developed in this study are likely more cost 
eff ective than modifying and managing land 
cover, a combination of these techniques are 
perhaps the most eff ective.

Inferences based on these models are 
not without constraints. First, data used to 
estimate the model parameters were obtained 
in the Central Valley of California at Beale 
Air Force Base. Therefore, inferences could 
be made beyond these geographic areas, but 
those inferences have a greater potential to be 
misleading. Second, variation associated with 
year could not be incorporated into the fi nal 
equations to keep the model interpretation 
relatively simple and applicable to predicting 
avian activity. We accounted for variation in 
year by fi tt ing a random intercept to reduce 
potential bias on the parameter estimates. 
Although additional annual variation that was 
not accounted for here may present potential 
bias in the model parameter estimates, this 

eff ect is likely negligible. Third, weather 
forecast data used to calculate avian activity 
could be misleading because of variation in 
forecast confi dence. For long-term planning, 
we suggest using hourly averages over 
multiple years from local weather stations and 
inputt ing these values into the model well in 
advance. Flight schedules subsequently should 
be adjusted based on more accurate short-term 
weather forecasts. Fourth, this study included 
all bird strikes in the analysis at Beale AFB 
regardless of variation in aircraft  damage. For 
example, some periods of avian activity (e.g., 
migration of larger birds) may produce greater 
risk than that of other periods. Unfortunately, 
identifying these patt erns was beyond the scope 
of this study because of limited sample size of 
bird strikes during the 2 years of avian radar 
deployment at Beale AFB. However, the use of 
avian radar at Beale AFB is an ongoing eff ort, 
and research that investigates these patt erns 
would be benefi cial.

The model parameters that we estimated 
should be viewed only as a baseline for ongoing 
studies. With additional data collected by avian 
radar systems, model parameter estimates for 
the eff ects identifi ed in this study could be 
fi ne-tuned periodically. Additional factors that 
were not considered in our analysis contribute 
to unexplained variation in avian activity, 
and, thus, we encourage challenging the 
current model fi t by incorporating additional 
environmental covariates based on a priori 
hypotheses. Further, more rigorous models that 
defi ne relationships between avian activity and 
risk of bird strikes would be benefi cial. The odds 
ratios reported here should be interpreted with 
caution because of a limitation in the number of 
known bird strikes during radar monitoring at 
Beale AFB. With robust sample sizes of known 
bird strikes, models that investigate additive 
and multiplicative eff ects between activity 
indices and other hypothesized explanatory 
variables, such as fl ight altitude and air traffi  c 
(number of aircraft  in fl ight), would be very 
informative and could be interpreted in terms 
of odds ratios based on model coeffi  cients. At 
this time, we suggest assessing risk with the 
method described in the model implementation 
section instead of odds ratios until sample sizes 
of known bird strikes during radar deployment 
are larger. Nevertheless, the relationships 
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identifi ed here between avian activity and 
bird strikes, coupled with the estimated 
model parameters of avian activity using 
time-dependent and meteorological variables, 
provide an important tool in mitigating the risk 
of bird strike at Beale AFB and other airfi elds 
that share similar characteristics.
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