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ABSTRACT Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for
wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed
mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In
the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of
waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machinery-
intensive process is not practical for routine assessments needed to examine long-term trends in waste rice
availability. We tested several experimental methods designed to rapidly derive estimates that would not be
burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency
of each method and then conducted field tests. For each approach, methods did not vary in root mean squared
error, although some methods did exhibit bias for both simulations and field tests. Methods also varied
substantially in the time to conduct each sample and in the number of samples required to detect a standard
trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds.
Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with
density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers
establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering
waterfowl. � 2011 The Wildlife Society.

KEY WORDS California, harvested rice, rice seeds, Sacramento Valley, seed availability, seed density, waterfowl food,
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Rice farms have displaced much of the original marshland in
many major waterfowl wintering regions of North America
(Eadie et al. 2008). However, rice fields flooded after harvest
function like managed wetlands by providing foraging and
roosting habitats for wintering waterfowl and other water-
birds (Elphick 2000). Rice seed remaining in flooded and dry
fields after harvest (waste rice) constitutes a critical food
resource for wintering waterfowl, including dabbling ducks
(tribe Anatini), diving ducks (tribe Aythyini), geese (tribe

Anserini), and swans (tribe Cygnini; Heitmeyer 1989, Miller
et al. 1989, Ackerman et al. 2006, Central Valley Joint
Venture 2006, Stafford et al. 2010). This food is essential
for sustaining large wintering populations of waterfowl in
many locations, including California’s Central Valley, USA
(Miller and Newton 1999, Central Valley Joint Venture
2006).
The Central Valley Joint Venture (2006) uses availability of

rice seed for bioenergetics-based habitat-planning models to
estimate winter food requirements of wintering waterfowl.
The energy requirements convert to habitat restoration and
enhancement objectives to support objective levels of win-
tering waterfowl populations in the Sacramento Valley, the
major rice-growing region in California (Eadie et al. 2008).
Rice farming in the Sacramento Valley is under intense
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economic pressures from urbanization, with attendant com-
petition for land and water (Hill et al. 2006). Because of this
pressure and concern that the harvest of rice fields is becom-
ing more efficient, leaving less waste seed available for
waterfowl (Elphick et al. 2010, Miller et al. 2010), regular
long-term monitoring is needed to accurately track rice
availability with a precision that can detect trends for timely
management responses.
Waste rice results from preharvest seed loss (seed shatter

prior to harvest), gathering seed loss (cutting too high, reel
shatter, excess rotor speed, excessive forward speed, downed
rice), and processing seed loss (threshing, separator, cleaning
shoe, body leakage; Quirk 2003). Most harvesting machines
have spreaders that disperse processed seeds and straw, so
waste rice tends to be widely spread. Previous studies esti-
mated the amount of waste rice in the Sacramento Valley
after conventional harvest (Miller et al. 1989) and strip-
harvest (Miller and Wylie 1996). These 2 studies produced
relatively precise estimates of the density of rice seed remain-
ing after harvest (CV ¼ 5.2–12.9%), but the method used
was relatively time-consuming and labor-intensive.
Additionally, the method was dependent upon the use of
large-sized sampling frames, a variety of field machinery
(all-terrain vehicles [ATVs], generators, wet–dry shop vac-
uums, shears), and follow-up processing after the completion
of field collections, including machine threshing of straw,
machine seed separation, and hand sorting (Miller et al.
1989). In Arkansas and Mississippi, USA, investigators
have used 10-cm core samples in flooded or moist fields,
but the estimates are associated with wide confidence inter-
vals (�30–45% of the mean) even with large sample sizes
(Stafford et al. 2006, Havens 2007, Kross et al. 2008). There
is a need to develop a more rapid method to routinely
estimate the amount of rice available that employs minimal
use of personnel and sampling machinery and involves no
postcollection processing.
We evaluated practical methods for waterfowl managers to

rapidly obtain accurate and precise estimates of the seed mass
density of waste rice remaining in fields immediately after
harvest. We used a computer simulation to better understand
factors related to the performance of each method and
determine the potential efficiency of experimental methods
against the standard method (Miller et al. 1989) to predict
known simulated seed-mass densities with a random spatial
distribution of seeds. We followed the simulation analysis
with field tests of each method to grade their relative per-
formance for accuracy, precision, sampling time, and number
of samples required to detect a standard trend. We adopted a
requirement that for any method to be acceptable, it must
accurately and precisely predict the true rice seed-mass den-
sity, require a minimal amount of time in the field, and
require no additional processing once the field work is
completed.

STUDY AREA

We conducted simulation analyses at the Dixon Field
Station of the Western Ecological Research Center, in
Dixon, California, USA, and sampled 4 harvested rice fields

in Sutter and Yolo Counties in the Sacramento Valley. These
counties were 2 of the 8 counties that combined annually
contributed about 98% of all the rice grown in California
(National Agricultural Statistics Service 2006). Sampled
fields ranged in size from 16 ha to 59 ha, and were planted
in late April or early May 2009. All sampled fields were
planted with M206 medium grain rice, which constitutes
>95% of the rice grown in the Sacramento Valley. Fields
were harvested conventionally between mid-September and
mid-October 2009, and sampled within 1 week of harvest.

METHODS

The Standard Method (Control Plots) for Simulations
and Field Tests
The standard method used to obtain estimates of rice seed-
mass density in harvested fields in the Sacramento Valley
employs sample frames at �2 random points located in
individual fields across the rice-growing region distributed
proportionately by each county’s contribution to the rice
harvest (Miller et al. 1989, Miller and Wylie 1996). Pick-
up trucks are used to travel between sample fields, haul the
samples as they are collected each day, tow or carry ATVs
that are used in fields to get from one random sample point to
the next, and carry field equipment to the sampling sites. The
standard sample frame is a strip-quadrat (Bonham 1989)
measuring 6.0 m � 0.3 m, the length of which is the most
common width of modern harvester headers used in the
Sacramento Valley. This provision insures that the plot
accounts for all variation of seed density across the harvested
swath (Miller et al. 1989), which decreases variation between
sample points (Bonham 1989). We used the standard plot as
a control plot for computer simulations and field sampling.
Here we describe the field applications of the control and
experimental methods. We then follow with descriptions of
how we constructed these for the computer simulations.
Immediately following harvest, we laid out the control plots

using tape measures, stakes, and brightly colored cord, and
then used electric hedge trimmers and pruning shears to cut
out the straw layer from on top of the stubble inside the
control plots, being careful to not disturb seeds lying on the
ground. We saved the straw, which contained variable num-
bers of seed heads and loose seeds, in labeled sample bags.
We then conducted the experimental methods appropriate
for the specific control plot, after which we cut out and
discarded the stubble. Then we vacuumed the area inside
the control plot using generator-powered 30.3-L wet–dry
shop vacuums (Miller et al. 1989). We saved this ground-
level vacuumed material in labeled sample bags. Once we
sampled all fields, we processed bagged samples in facilities
equipped with a threshing machine and a seed cleaner
(Model 150HD; Farmstead Products, Hinckley, MN;
Miller et al. 1989). Finally, we hand-processed samples to
separate the rice seeds from dirt, blank seeds, small straw
pieces, and other seeds, followed by drying and weighing
(Miller et al. 1989). We adopted the convention that seeds
are defined as those in which the kernels (endosperm) were
�75% fully developed (Miller et al. 1989, Anonymous 2010),
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and used only these based on qualitative assessments in our
determinations of seed mass density of waste rice. This is
more restrictive than rules for acceptable rice seeds used in
other rice-growing regions (50% developed; Stafford et al.
2006). We included broken seeds, which were uncommon,
only if they were�50% of a full seed.We dried seeds at 708C
to constant mass and converted the mass density of seeds
from g/m2 to kg/ha (Miller et al. 1989, Miller and Wylie
1996). We used this standard to serve as the control plots for
all experimental methods in the field except the wandering-
quarter method (WQ), which required a different approach.
We conducted all of the field and simulation experimental
methods inside control plots. The control plot data served as
the true seed-mass density against which we tested experi-
mental methods for accuracy, precision, and time require-
ments for completion.
In the field, we determined the density of seeds separately

for the straw samples and ground samples in the control plots
(Miller et al. 1989, Miller andWylie 1996). The experimen-
tal methods only sampled the ground, as heavy straw would
interfere with measurements. Therefore, to account for total
seeds (straw plus ground), we examined whether or not the
density of rice in the straw could be predicted and used to
adjust final estimates of total seed-mass density for experi-
mental methods.

The Experimental Methods for Simulation
and Field Tests

The experimental methods we tested are generally from the
plant community ecology literature (Daubenmire 1968,
Bonham 1989, Higgins et al. 1994). We assumed that
estimation of the density of waste rice on the ground in a
harvested field is similar to estimation of plant stem density.
We further assumed that there would be a direct positive
relationship between seed density, or a negative relationship
between the distance between seeds, and the seed mass
density. We tested 13 methods in the field and 11 by
computer simulation. The methods included 1) line-inter-
cept (INTERCEP), 2) point-frequency (POINTFREQ), 3)
small-rectangular frames (SMALREC), 4) small-circular
frames (SMALCIRC), 5) step-point (STEPOINT), 6) closest-
individual (CLOSIND), 7) nearest-neighbor (NEARN), 8)
corrected-point-distance (CPD), 9) point-centered-quarter
(PCQ), 10) angle-order (AOR), 11) wandering-quarter
(WQ), 12) stem density (STEMDEN), and 13) stubble
height (STUB). We tested the results of each experimental
method against the results from its associated control plot.
We tested all of these methods by computer simulation,
except for STEMDEN and STUB, for which we had no
appropriate field data to set up simulations. The simulations
consisted of 10 replicates of each experimental method, and
the field study consisted of 4 replicates of each method in
each of 4 harvested fields (16 total replicates). All replicates in
each field occurred within an area of about 300 m � 50 m.
We conducted all experimental sampling inside and for the

entire length of the control plots to represent the same
amount of variation as the control plots themselves. For
all methods except STEPOINT andWQ ,>1 experimental

method was associated with each control plot. In particular,
we conducted the following groups of experimental methods
in the same control plots: INTERCEP and POINTFREQ;
SMALREC and SMALCIRC; CLOSIND, NEARN, and
CPD; and PCQ and AOR. In each case, care was taken not
to disturb seeds when conducting each method. We con-
ducted STEMDEN and STUB on all control plots. All
experimental method data were obtained on the ground after
the straw was collected and stubble had been removed, and
prior to vacuuming the control plots. This approach mini-
mized variation from sampling error that invariably would
have occurred if we had obtained control and experimental
samples at different locations. We collected data for control
plots and associated experimental sampling methods at about
the same time daily, and recorded start and end times for each
sample of each method. M. R. Miller and P. S. Coates
oversaw all field procedures to reduce observer error.
Quadrat-based methods.—Quadrat-based methods involve

counting seeds within a defined area and directly calculating
density as seeds per unit area. In our study, quadrat-
based methods included INTERCEP, POINTFREQ ,
SMALREC, SMALCIRC, and STEPOINT. We weighed
18 1,000-seed samples of M206 medium-grain rice to obtain
an average seed mass of 0.026 g (SE < 0.001). We then
multiplied rice seed density (seeds/m2) by 0.255 to convert
seed density (seeds/m2) to seed mass density (kg/ha) for all
quadrat-based methods.
The INTERCEP method uses segments of a line as ob-

servational units (Daubenmire 1968, Bonham 1989). Inside
a control plot, we established a 6-m � 6.35-mm-wide line
with alternating red and white sections, each 10 cm long.
This yielded 30 10-cm sections of each color (total of 60) in
each control plot. We treated the line as a series of narrow
quadrats because the width of the line was nonnegligible
relative to the size of a rice seed. We recorded the number of
seeds on the ground intercepted (touched on either side of
the line or lying wholly or partly under the line) by each red
and white segment separately as a measure of variability. We
calculated rice density along the intercept line as the number
of seeds intercepted by the line divided by the area sampled
(Table 1). We determined the area sampled by applying a
5.4-mm (the average dimension [(length � width)/2] of an
M206 rice seed) buffer to the line by assuming that rice seeds
were oriented randomly. Therefore, each section sampled
0.001175 m2. We evaluated all 60 segments of the line, and
evaluated the red and white segments separately.
The POINTFREQ method (Daubenmire 1968, Higgins

et al. 1994) requires the use of rods lowered to the ground.
We successively lowered 10 6.35-mm diameter rods to the
ground through holes set 3 cm apart drilled in a 32-cm-long
bar supported by a frame above the ground (Bonham 1989,
Higgins et al. 1994). When each rod hit the ground, we
recorded the number of seeds hit by each rod. The frame was
then shifted along the line to a point immediately adjacent to
the previous frame position, and the procedure was repeated
for the entire length of the control plot for 16 frame sets and
160 rod drops. From these data, we calculated rice density
within the area covered by all rod drops as the total number of
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rice seeds divided by 0.037 (based upon a sampled area of
0.000231 m2/rod, including the 5.4-mm buffer added to the
radius to account for the size of an average rice seed; Table 1).
SMALREC and SMALCIRC were quadrats similar to

the control plots, but at a smaller scale. For SMALREC, we
used steel sample frames measuring 0.102 m � 0.51 m
(area ¼ 0.052 m2). A rectangular shape is efficient for sam-
pling vegetation because the elongate plot has a high prob-
ability of intercepting several plant clusters at once without
falling entirely within or outside of a single cluster, and as a
result, fewer plots are needed to obtain averages representa-
tive of the whole (Daubenmire 1968). For SMALCIRC, we
used a circular steel frame with a radius of 0.127 m, which
sampled an area of 0.051 m2. A circular-shaped sample
frame is efficient for vegetation because the small perime-
ter:area ratio could reduce the number of plants erroneously
counted at the margin of the plot that actually fell outside
(Daubenmire 1968).Whether these issues are relevant to rice
seeds is unknown. In each control plot, we systematically
distributed 5 sample points running from one end of the
control plot to the other at 1-m intervals. At each point,
we placed a rectangular and a circular frame next to one
another, with the rectangles parallel with the control plot.
We picked up all seeds and chaff from inside the frames using
18-V rechargeable hand-held wet–dry vacuums (Model
DC515; DEWALT Industrial Tool Co., Baltimore, MD).
We then counted the seeds in the field using graded sieves to
separate seeds from the chaff. After we obtained seed counts,
we returned all seeds to the control plot inside the respective
small frames so they could be included in the control plot
sample. We repeated this process for the other 4 sample
points.
The STEPOINT method consisted of collecting seed

counts at sample points at 0.5-m intervals along each side
of 2 6-m lines in control plots for 24 sample points per line
and 48 in each control plot. We used this extra sample length
to increase the number of seeds counted.We also adapted the
loop method (Parker 1951, Bonham 1989) to increase the
likelihood of intercepting seeds relative to using dimension-
less points. At each sample point in succession we lowered an
aluminum tube that had a 2.54-cm-diameter open-circle
loop attached at the bottom to the ground. We recorded
the number of seeds touched and enclosed by the loop, and
adjusted the sampled area to account for the average dimen-
sions of a rice seed as for INTERCEP and POINTFREQ .
We calculated seed density as the total number of seeds
divided by the area sampled by the loops (0.0243 m2).
Distance-based methods.—Distance-based methods use the

distance between individuals to determine vegetation density
(Bonham 1989), and they are especially efficient for sampling
items that are sparse and widely scattered (Ludwig and
Reynolds 1988). Results vary widely among the several
methods available, however, even when they are used for
the same plant species in the same plots at the same time
(Laycock and Batcheler 1975, Oldemeyer and Regelin 1980,
Bonham 1989, Higgins et al. 1994). We suspect that this
phenomenon could be an issue with rice seeds as well. The
distance methods we used were CLOSIND, NEARN,

CPD, PCQ , AOR, and WQ . For each distance-based
method, measurements were made in cm; we therefore mul-
tiplied seed density (seeds/cm2) by 2,550 to obtain mass
density (kg/ha).
For CLOSIND, NEARN, and CPD, we established 5

sample points in each control plot systematically located 1 m
apart. At each sample point we measured and recorded the
distance from the point to the nearest rice seed, which was
the CLOSIND measurement. We then measured the dis-
tance from that seed to its nearest seed, the NEARN mea-
surement, and finally we measured the distance from that
seed to its nearest seed, an additional measurement used by
the CPD method to correct for nonrandom seed distribu-
tions, before moving to the next sample point and repeating
the process. CLOSIND and NEARN are theoretically sim-
ilar, with similar equations for estimating density that rely
upon the assumption of random seed dispersion (Table 1).
The CPD method uses all 3 distance measurements to
estimate seed density corrected for nonrandom distributions
(Table 1; Laycock and Batcheler 1975, Oldemeyer and
Regelin 1980, Bonham 1989, Higgins et al. 1994).
PCQ and AOR consisted of measurements from a sample

point to the closest seed and the third-closest seed in each of
4 quadrants centered on each of 5 sample points placed 1 m
apart in the control plot. PCQ essentially measures the
point-seed distance in each quadrant from a single point
and estimates density using an extension of the CLOSIND
estimator (Table 1). The AOR method attempts to correct
for the potential nonrandom distribution of seeds. Seed
density for AOR is estimated in 2 ways, and the final density
estimate is based upon the relationship between the 2 esti-
mators (Laycock and Batcheler 1975). Rather than use a
different method to calculate density at each location, and in
the spirit of developing a simple, rapid assessment method,
we evaluated the appropriate equation for each of our 16
samples.We applied the estimator appropriate for 11 cases to
all samples (Table 1).
The WQ method estimates population density of plants

where no a priori assumption of randomness is made (Catana
1963, Bonham 1989). Traditionally, WQ consists of a
sequence of measurements of the distances between closest
seeds along 4 azimuth lines positioned to form a rectangle to
determine the mean distance between seeds. To reduce
sample time, we chose to use only one azimuth line. We
could not use standard control plots for this method because
the sampling area determines the size of the control plot.
Prior to initiating seed location and measurement, we re-
moved straw from an area of about 1 m � 2 m. We chose a
random point in this area, and set a directional line perpen-
dicular to the direction of harvester travel. We used an
aluminum form in the shape of a right-angled ‘‘V’’ to
create a 908 inclusion angle. We placed the angle of this
form at the nearest seed to a random point as the starting
point. We measured the distance to the nearest seed within
the 908 inclusion angle, then set the aluminum frame at that
seed, with the azimuth line as a bisector. We repeated this
process until 30 measurements between seeds had been
taken.
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We established a primary control plot a posteriori as the
smallest rectangle that fit over all of the 30 sample points
with a buffer of a distance half that between the random
starting point and the first seed. Therefore, primary control
plot size in WQ varied from sample to sample depending
upon distance between seeds. The primary control plot was
vacuumed after WQ measurements were obtained, as for
other methods, and we estimated seed density. Because we
established primary control plots after measurements were
taken, and we had removed the straw a priori, we obtained
seed numbers in the straw layer of an identically sized plot
located immediately adjacent to the primary control plot, the
nested plot. We used the standard density estimator for WQ
(Table 1).
Other methods.—The STEMDEN method makes the as-

sumption that the loss of seeds during harvest is related to the
density of rice stems, which is assumed to be related to the
standing crop of seed present prior to harvest. We obtained
these data in all control plots, after the straw layer had been
removed, by counting the number of stems contained within
5 SMALCIRC steel frames distributed across the control
plot 1 m apart as in SMALCIRC. The STUB method
assumes that the height of stubble is related to the condition
of the rice field during harvest. For example, fields in which
plants are erect, forming a uniform seed layer, are likely
harvested more efficiently than are fields in which plants
have fallen over (downed or lodged rice). We assumed that
the former would leave tall stubble and the latter shorter
stubble. We obtained stubble height measurements as the
height of the stubble nearest the center of the same
SMALCIRC frames used for STEMDEN. In addition to
predicting the density of rice on the ground and total density
of rice via regression, we also used STUB and STEMDEN
to estimate the density of rice in the straw for use as a
correction factor to add to the predicted ground density.

Computer Simulations

Great variation in seed density within and between harvested
rice fields exists (Miller et al. 1989, Miller and Wylie 1996,
Stafford et al. 2006, Eadie et al. 2008, Greer et al. 2009). It
was, therefore, essential that we determine whether the
performance of different estimators of seed density varied
with seed density. We conducted a Monte Carlo simulation
to understand the potential influence of seed density on the
relative effectiveness of different sampling methods, facilitate
prediction of experimental methods that might offer only
low likelihood of achieving accurate and precise assessments
of seed density, and enable predictions of the outcomes of
field sampling methods without consideration of the length
of time required to complete them (Engeman et al. 1994).
We qualitatively compared the accuracy and precision
of computer-simulated methods against the performance
of the methods in field applications, where the length of
time required for completion of the methods is a critical
consideration. This comparison facilitated the development
of hypotheses to explain how methods performed in the field
and served as an informal sensitivity test to departures from
assumptions implicit in each method.

We designed the computer simulation using ArcGIS
Desktop 9.3, and created a Personal Geodatabase to store
all feature classes used in the simulations. We organized all
files within Feature Datasets for each experimental sampling
method to ensure consistency in coordinate systems and XY
resolutions among all files. We set coordinates to a Universal
Transverse Mercator map projection because of its ability to
represent small shapes and angles accurately with minimal
distortion of area (ESRI 1994). We created multiple-feature
class polygons and stored them in the geodatabase to simu-
late rice seed sampling tools used in the field and simulate the
rice field itself. Using data from Miller et al. (1989) and the
method of Pielou (1960), we found that seeds tended to be
randomly distributed at a landscape scale. Thus, we assumed
random distributions of seeds on a homogeneous landscape
instead of clumped seed distributions or variation in rice seed
densities across the harvester path.
Base polygon and control plots.—We performed 10 simula-

tions at each of 4 realistic rice seed-mass densities of 50 kg/
ha, 200 kg/ha, 350 kg/ha, and 700 kg/ha in harvested fields
for each method. These levels cover the range of seed mass
densities known to occur in the Sacramento Valley (Miller
et al. 1989, Miller and Wylie 1996), and 350 kg/ha approx-
imates the average estimate in the Sacramento Valley from
the 1980s (Miller et al. 1989). We populated a Base Polygon
(Base Field) with the random seed distributions representing
the 3 study densities. We defined a 6.0-m � 0.3-m control
plot in the Base Field, which had dimensions defined by 3-m
buffers on all sides of the control plot, or 12.0 m � 6.3 m
(75.6 m2). Simulations for all experimental sampling
methods started inside the control plots, and the Base
Field created an ample buffer for any experimental method
that might cross the boundary of the control plot. Harvester
travel was set as north–south, and we oriented all control
plots east–west to represent field conditions in which plots
must be oriented perpendicular to the direction of harvester
travel (Miller et al. 1989). Based on the randomly generated
numbers of seeds in the control plots, we calculated seed
densities for all experimental methods as if they had been
performed in the field.
Rice seeds.—We simulated rice seed density by generating

point features in the Base Field using ArcMap’s Create
Random Points tool. This tool uses a random number gen-
erator to place a user-specified number of points at random
coordinates within a given area. The input number of points
for the tool was chosen from a table of seed numbers created
in SAS software (SAS Institute, Inc., Cary, NC) using a
Poisson random number generator based on the 3 seed
density values simulated. For example, the mean number
of seeds for our Base Field at 350 kg/ha is 115,043 seeds
(75.6 m2 � 1521.73 seeds/m2). The corresponding Poisson
table contained values with a mean of 115,043 and which
simulated the probable variance in the number of seeds
remaining in areas of that size. We selected a random
number for each iteration, which resulted in a different
number and distribution of point features for each simula-
tion. The vector points in ArcMap are simple feature loca-
tions defined by an X,Y coordinate and have no dimension.
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Therefore, for the purposes of simulation, we considered the
points themselves to be center points of the rice seeds, and
a 0.15875-cm buffer was applied in all experimental methods
to approximate actual seed dimensions (seed width ¼
0.318 cm).
Experimental methods.—The INTERCEP method re-

quired the creation of a 6.35-mm-wide polygon, the inter-
cept line, extending the length of the control plot to simulate
the line used in the field. The full polygon consisted of 60 10-
cm adjacent features (sections) arranged end to end along the
line to simulate alternate red and white-colored 10-cm sec-
tions on lines used in the field. We performed a ‘‘Select by
Location’’ to find all seeds that intersected or occurred in
each 10-cm section of the full polygon.
The POINTFREQ method required the creation of circle

polygons to simulate the round rods used in the field. We
arranged the polygons into 16 sections along the length and
inside of the control plot; each section contained 10 circles of
a 2.5-mm radius 3 cm apart. This array ran the total length of
the control plot. We found all circles that intersected or
contained seeds and counted the number of seeds intersected
by each circle.
We simulated the SMALREC (10 cm � 5 cm) and

SMALCIRC (12.6-cm radius) quadrat methods by creating
5 polygon features (rectangles or circles, respectively) spaced
evenly across the control plot polygons at 1-m intervals. We
selected the points that fell inside the rectangles or circles and
recorded the total number of points within each rectangle or
circle for each iteration.
The final quadrat-based method, STEPOINT, was simu-

lated in a fashion similar to POINTFREQ . Circle polygons
of 2.54-cm diameter were spaced at 0.5-m intervals on either
side of 2 lines running parallel inside a control plot located
within the Base Field.We recorded the total number of seeds
that fell within the control plot and the number of seeds
intersecting the circles.
Distance-based methods yield estimated distances from

random sample points or between seeds. For the first group
of distance measures (CLOSIND, NEARN, CPD), we
created 5 feature-class points for each simulation and spaced
them evenly 1 m apart in the control plot. CLOSIND
requires a measurement from a starting point to the closest
seed, and we used ArcMap’s Near tool to calculate these
distances. The tool appends the distance of the closest seed to
each starting point into the attribute table of the starting
points feature class, and we recorded each value. NEARN
and CPD required subsequent measurements to the next
closest seed and from that seed to its closest seed, respective-
ly. The Near tool was not able to calculate measurements
using only a single feature class, so we created a new feature
class using the locations of the nearest seeds. Points already
located were excluded from additional searches within the
seeds layer to avoid repeating measurements. We repeated
this process until all measurements were calculated and
recorded based on the requirements of the experimental
methods.
The second group of distance-based methods, PCQ and

AOR, use distances to nearest seed and third nearest seed,

respectively, in each of 4 quadrants around a sample point.
We created 5 feature-class sample points spaced evenly 1 m
apart in the control plots as before. Additionally, we created a
polygon feature class of 4 squares per sample-point location
to represent the quadrants needed around each sample point.
For PCQ , the process was essentially the same as that used
in CLOSIND, except that the Near tool was used to select
seeds only in each individual quadrant. We recorded dis-
tances of closest seeds from the sample points in each quad-
rant for PCQ , and the third nearest seed for AOR.
The final distance-based method, WQ , used the distances

between 30 nearest points in succession within 458 of either
side of a compass bearing. A random seed point was chosen
inside the Base Field using Hawth’s Tools Create Random
Selection tool (Beyer 2004). Starting from the random seed
location, ArcMap’s Near tool was used to find the nearest
seed along a 908 or 2708 compass bearing (to stay perpen-
dicular to harvester travel). For each seed selection, the Near
tool appended the distance and angle measurements into the
attributes of the seed points feature class. The closest seed
falling within �458 of the bearing was then selected and its
distance recorded, and it was exported into a feature class so
that it could be used for the next Near operation. This
process was repeated until the distance between 30 closest
seeds had been measured. A post hoc control plot was created
to surround the WQ seeds. The plot was created by using
ArcMap’s Buffer tool to buffer each set of WQ seeds by half
the distance between the sample point and the first seed, then
running a Bounding Containers Python script (Patterson
2008) to create a rectangular feature class with the same
extent as the buffer layer. We then found the total number of
seeds located inside the control plot.

Field Study: Experimental Estimates of Rice Density

We obtained permission from 3 rice growers to conduct our
studies in their harvested fields. We selected 4 fields that
would not receive a postharvest treatment (e.g., mowing,
chopping, stomping, baling, plowing, or flooding) within
about 1 week after harvest, so that we would have time to
obtain field data. We selected fields planted with M206
medium-grain rice. Additionally, these fields were harvested
conventionally (Miller and Wylie 1996) and available for
sampling frommid-September to mid-October to reduce the
likelihood of encountering rainy periods. It was not necessary
that study fields represent the entire rice-growing region,
only that they be harvested using routine conventional tech-
niques that would result in seed distribution patterns repre-
sentative of average conditions. We hoped to find a wide
range of seed densities within and among fields to facilitate
development of robust regression equations so that we could
predict seed mass density for any rice field with seed mass
densities likely to be encountered. Previous work in the
Sacramento Valley suggested our sample should achieve
this goal (Miller et al. 1989).
We chose to work only in conventionally harvested fields

because they present the most difficult sampling conditions
because of the heavy straw load (Miller et al. 1989).
Approximately 80% of rice in the Sacramento Valley is
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harvested conventionally (J. Fleskes, U.S. Geological Survey,
unpublished data). Additionally, the conventional fields
allowed us to obtain estimates of the density of seeds in
the straw layer and on the ground separately. The former
could then be used as necessary to adjust results of the
different experimental methods, which only obtain data
from the ground. We chose not to work in burned fields
(because autumn burning only rarely occurs now; Connelly–
Areias–Chandler Rice Straw Burning Reduction Act of
1991: AB 1378, Ch. 787, 1991), or stripped fields (Miller
and Wylie 1996), although our methods, without adjust-
ments for seeds in the straw layer, would be adequate for
them. We also chose not to work in baled, mowed, chopped,
rolled, or stomped fields, which are methods requiring addi-
tional vehicle traffic in harvested fields, thereby pushing
more seeds into the soil. For application in the future, we
assume a priori that harvested fields will need to be sampled
prior to most postharvest treatments.

Evaluation of Experimental Method Performance

We used several criteria (R2, mean squared error [MSE],
bias, time required to conduct a sample, no. of samples
required to detect a standard trend, and total time required
to detect a standard trend) to evaluate the performance of
each experimental method for the field experiment.
Evaluation of performance of the simulation experiment
was limited to R2, MSE, and bias. We used linear regression
to examine howwell each experimental method predicted the
density of rice on the ground. We used raw data collected in
the field or calculated in GIS (seed counts or distances) from
each experimental method as predictor variables. We deter-
mined the necessity of transformation of the response vari-
able, and which transformation to use, with a maximum-
likelihood estimate of l for the Box–Cox family of trans-
formations, where the response (Y) is transformed according
to Y l when l 6¼ 0, and log(Y) when l ¼ 0 (Quinn and
Keough 2002). Because we were primarily interested in
predicting the response variable, rather than interpretation,
we used the maximum-likelihood estimate of l (Faraway
2005). Within each experimental method, we compared the
fit of a model predicting rice density using each experimental
method with a null (intercept-only) model using the
Bayesian Information Criterion (BIC). Using BIC allowed
us to explicitly specify uniform prior probabilities to the
model set and calculate the posterior probability of each
model (Link and Barker 2006). Because different control
plots were used for most experimental methods, we could not
directly compare experimental methods using information
criteria (Burnham and Anderson 2002). We therefore qual-
itatively compared experimental methods using adjusted R2.
We also used simple measures of precision and bias to

compare experimental methods. We examined the ability
of each method to predict the density of rice using squared
error, which is the squared difference between the expected
(known control plot) and observed (based on experimental
methods) densities. Methods with lower MSE better predict
rice density. In addition to MSE, we calculated the bias
associated with each experimental method as the raw differ-

ence between the expected and observed densities. An ideal
method would have a mean bias of zero. We compared
squared error and bias among methods using linear models
with experimental method as the predictor variable to a null
model of no difference among methods in squared error or
bias with BIC using uniform prior probabilities. If the
method model had a greater posterior probability than the
null, we fit an alternative parameterization of the method
model without an intercept. This model compares the mean
response (squared error or bias) for each method to zero, and
identifies those methods for which MSE or mean bias is
significantly different from zero. We presented MSE as root
mean squared error (RMSE) for interpretation on the origi-
nal scale of measurement.
Because our goal was to establish a rapid and efficient

method of estimating rice density in the field, we also
compared the amount of time required to conduct each
method. We calculated the number of minutes required
for a single sample (defined as the effort expended to char-
acterize the control plot) for each method, and compared
them using 1-way analysis of variance (ANOVA). The
model with time varying by method was compared to a
null model with BIC, with a prior probability of 0.5 for
each model. We made pairwise comparisons between meth-
ods with t-tests using Bonferroni correction for multiple
testing (Quinn and Keough 2002). For instances in which
a method was nested within another method, we could not
derive an independent measure of time to conduct each
specific method, but instead we provided estimates.
We further examined efficiency as the ability of each meth-

od to detect a standard trend. We used Program
MONITOR 11.0 (Gibbs and Ene 2010) to determine the
number of samples required to detect a 1% annual trend over
10 yr with monitoring at 5-yr intervals. We used simple
regression, assumed a constant coefficient of variation, set
significance to a ¼ 0.10 and power ¼ 0.80 for all methods,
and evaluated each method over 1,000 iterations using the
empirical mean among samples as the starting value and the
standard deviation among samples as our measure of total
variation. We systematically varied the number of samples
until simulations resulted in 95% detection of both a 1%
annual increase and a 1% annual decrease. For quadrat-based
methods, we used the mean and standard deviation of raw
seed counts, but distance-based methods required use of
estimated densities. After determining the number of sam-
ples required to detect the trend, we multiplied the mean
time to conduct a sample of each method by the number of
samples to determine the total sampling time required to
detect the trend.
As an overall measure of method performance, we ranked

each method byR2, RMSE, bias, time per sample, number of
samples required, and total sampling time required. We then
calculated the mean rank of each method as a measure of
overall performance.
Because a portion of rice seeds remain in the straw in many

fields (those harvested conventionally and not baled or
burned), we used linear regression to examine the use of
different measures for predicting the density of rice in the
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straw, which was not directly measured by any of our experi-
mental methods. In particular, we compared the ability of
STEMDEN, STUB, and ground density (as measured by
the control plot) against a null model to examine which
method (if any) best predicted the amount of rice in the
straw as a correction factor to add to the ground density of
rice to determine the total amount of waste rice. We com-
pared models using BIC with a uniform prior probability of
0.25 placed upon each model. To further examine the varia-
tion in the relationship of the best predictor of the density of
rice in the straw over time, we used model selection to
determine whether the relationship of the best predictor
variable and the density of rice seed in the straw varied
between our study and data from the Sacramento Valley
collected in 1985. We fit models representing a different
relationship (interaction between time period and the pre-
dictor), the same relationship with a different constant
(additive model with time period and the predictor), the
predictor only, and time period only. Models were again
compared using BIC with a uniform prior probability of 0.25
placed upon each model.
All analyses (exclusive of simulating data and power analy-

sis) were conducted in R version 2.11.0 (R Development
Core Team 2010). We calculated the maximum-likelihood
estimate of l using the package MASS (Venables and Ripley
2002). Where appropriate, we established a ¼ 0.05 to
determine statistical significance.

RESULTS

Computer Simulation
Several methods performed well in computer simulations
(Fig. 1). Using seed counts and distances, 2 methods
(STEPOINT and SMALCIRC) had an adjusted R2 of 1.00
(Table 2). Four methods (CPD, NEARN, POINTFREQ ,
and CLOSIND) had an adjusted R2 < 0.90 (Table 2).
Although RMSE varied among methods, the probability
that method explained variation in squared error relative
to a null model was <0.001. Bias varied among methods,
however, with POINTFREQ ,NEARN, andAORexhibiting
negative bias, and CPD exhibiting positive bias (Table 3).
Therefore, based upon simulated data, STEPOINT, small
frames (SMALCIRC and SMALREC), all 3 versions of
INTERCEP, and WQ performed well for estimating the
density of rice seeds (Fig. 1).

Field Experiments
Experimental methods generally performed more poorly for
predicting the density of rice in the field than they did for
computer simulations. When using field-collected raw data
as the predictor variable, only one method, the red sections of
INTERCEP, had an adjusted R2 of 0.90 or greater (Table 4;
Fig. 2). Two methods, STUB and STEMDEN, performed
poorly (adjusted R2 � 0.32), and the latter predicted rice
density more poorly than the null model (Table 4). The
probability that experimental methods differed in squared
error, compared to a null model of no difference among
methods, was only 0.20. Methods varied in their bias (prob-
ability of an effect of method on bias>0.999), with NEARN

and CPD exhibiting negative bias, and STEPOINT and
AOR exhibiting positive bias (Table 5; Fig. 3).
The density of rice on the ground was the best predictor of

rice in the straw; other models had very little support
(Table 6). The relationship between the density of rice on
the ground and the density of rice in the straw did not vary
between 1985 and 2009 (Table 7). The amount of rice in the
straw increased with an increasing amount of rice on the
ground (l ¼ 0.07; adjusted R2 ¼ 0.46, intercept ¼ 1.21
[SE ¼ 0.014], slope ¼ 3.3 � 10�4 [3.4 � 10�5]; Fig. 4).
Methods varied substantially in efficiency. The probability

that the time to complete experimental methods differed
from one another was >0.999. The most rapid method was
STUB plus STEMDEN, which averaged 7.1 (SE ¼ 0.43)
min/sample (Table 8). SMALREC, which was the most
precise and least biased method, took the longest, with an
average of 56.5 (SE ¼ 5.26) min/sample (Table 8). Of the
methods that were unbiased, CLOSIND took the least time.
Conducting this method plus NEARN and CPD took an
average of 22.4 (SE ¼ 2.21) min/sample. Because CLOSIND
only requires measurement to the first seed, the actual time
per sample is approximately 33% of that time, or 7.5 min.
When all sections were counted, INTERCEP took an aver-
age of 39.7 (SE ¼ 5.13) min; however, conducting
INTERCEP with only the white or red sections would
take half that time (19.9 min) with no apparent loss in
performance (Table 8). Methods also varied substantially
in the number of samples required to detect a standard trend
in 95% of simulations. INTERCEP required the fewest
samples (510–550), and SMALREC and STEPOINT
also required relatively few samples (740 and 790).
NEARN required the greatest number of samples (2,150)
to detect the trend (Table 8). When both the number of
samples and the time required to collect them were consid-
ered, CLOSIND detected the trend in the least amount of
sampling time (150.4 hr); INTERCEP (red) and INTERCEP
(white) were also efficient methods (168.6 and 181.8 hr).
WQ , the least efficient method, would require 1,267.1 hr of
sampling time to detect the trend (Table 8).
When all measures of performance were weighted equally,

INTERCEP methods performed well, with the 3 lowest
mean ranks (Table 9). In contrast, WQ , SMALCIRC, and
AOR performed relatively poorly overall (Table 9).

DISCUSSION

The best overall method, and the one we recommend for
monitoring the density of rice seeds in the Sacramento
Valley, is INTERCEP.We recommend this method because
it is relatively accurate, is unbiased, and takes little time in the
field. Efficiency in the field can be increased by counting rice
seeds on every other 10-cm segment of the line without any
apparent loss in performance. Differences between red and
white segments of the line were not significant, and were
likely the result of sampling variation. Alternatively, light-
colored rice seeds might be more visible when adjacent to a
red segment than a white segment, and it is, therefore,
prudent to sample red segments in preference to white seg-
ments. In addition to these effectiveness and efficiency con-
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siderations, INTERCEP requires little specialized equip-
ment: a pitchfork to clear straw, a bypass pruner to cut
stubble, a tape with 10-cm sections marked to obtain sam-
ples, 2 spikes to anchor the tape, and a pointed device (such as
a wire flag or pocket knife) to carefully manipulate chaff on
the ground to expose rice seeds. The only method that was
ranked higher than INTERCEP for precision and bias in the
field, SMALREC, took 3 times longer to conduct per sam-
ple, and required handheld cordless wet–dry vacuums, field

generators, custom-built frames, sieves, and other supplies
that increased cost. The modest (and statistically insignifi-
cant) gain in performance by using SMALREC would not,
therefore, be cost- or time-effective.
Although we selected INTERCEP as the best overall

method, we found little evidence for variation among meth-
ods in squared error. This result was likely caused by rela-
tively large variation in squared error among samples within
each method, resulting in low power to detect differences

Figure 1. Calculated rice-mass density using experimental methods versus simulated rice-mass density. Circles represent individual simulations and corre-
sponding density estimates using each experimental method. (A) INTERCEP ¼ line-intercept (all sections of tape), (B) INTERCEP (red sections of tape),
(C) INTERCEP (white sections of tape), (D) POINTFREQ ¼ point-frequency, (E) SMALREC ¼ small-rectangular frames, (F) SMALCIRC ¼ small-circular
frames, (G) STEPOINT ¼ step-point, (H) CLOSIND ¼ closest-individual, (I) NEARN ¼ nearest-neighbor, (J) CPD ¼ corrected-point-distance,
(K) PCQ ¼ point-centered-quarter, (L) AOR ¼ angle-order, and (M) WQ ¼ wandering-quarter. The line in each plot represents perfect correspondence
between estimated and simulated densities.
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among methods. The inability to statistically distinguish
among methods, though problematic for choosing a method,
might alternatively indicate that all methods are equally good
(or poor) estimators of density. Despite the lack of statistical
differences among methods, a prudent choice of method
remains one that exhibits lower, rather than higher,
RMSE and takes less time to complete in the field at lower
cost.
In contrast to RMSE, methods varied in their bias. Two

general patterns were evident in bias. One pattern was a
tendency for quadrat-basedmethods (except POINTFREQ)
to be biased high (i.e., greater observed rice-seed nos. than
expected). This systematic bias in quadrat-based methods

could be caused by several mechanisms. For small quadrats,
particularly those with indefinite outer edges where rice
seeds that touch the edge of the quadrat are counted
(INTERCEP, POINTFREQ , and STEPOINT), observ-
ers might have chosen to include rice seeds that are just
outside the edge of the quadrat. Alternatively, buffer dis-
tances might have been estimated too small, resulting in
extrapolation of seed counts to a smaller area and biasing
density high. For the larger quadrats (SMALREC AND
SMALCIRC), bias might have been induced by the uneven
ground surface often present in rice fields. When the frames
do not fully contact the ground, seeds from outside the
quadrat might be accidentally vacuumed and included in
the sample. Although field crew training and other measures
were taken to minimize these potential sources of bias, it
might be impossible to entirely eliminate them. Interestingly,
the single quadrat-based method for which bias was negative,
POINTFREQ , was also biased negative in the simulation
study. This result suggests some error in the calculation of
density from this method, which was originally developed to
calculate percent cover. For all other quadrat-based methods,
the simulation study demonstrated very little bias. Even
using data collected in the field, bias in quadrat-based meth-
ods was not significant for any method except STEPOINT.
The other general pattern in bias was for distance-based

methods (except WQ and AOR) to be biased low. This
systematic bias in distance-based methods could be caused by
several mechanisms. First, distance-based methods assume
perfect detection. If the appropriate seed to which measure-
ments should be made is misidentified (e.g., the second-
nearest seed is measured, rather than the nearest), density
will be biased low. Systematic measurement error, for exam-
ple measuring to the outer edges of seeds, rather than their
centroids, might also cause bias in density estimates using
distance-based methods. Measurement error might be par-
ticularly relevant at high rice densities, where distances
between rice seeds can be small relative to the size of the
seeds, making determination of the centroid of the seeds

Table 2. Performance of experimental methods based upon regression of raw data from the simulation study to predict the density of rice seeds. Methods are
presented in order of decreasing adjusted R2. All models had a probability >0.999 relative to a null model.

Methoda lb Adjusted R2 Intercept (SE) Slope (SE)

STEPOINT 0.99 1.00 4.05 (1.90) 0.18 (0.001)
SMALCIRC 0.97 1.00 7.91 (3.72) 0.74 (0.008)
SMALREC 0.89 0.99 13.46 (2.39) 0.43 (0.005)
WQ �0.37 0.97 0.038 (0.003) 0.029 (7.6 � 10�4)
INTERCEP (all) 0.93 0.97 26.58 (6.94) 2.42 (0.071)
AOR �0.34 0.97 0.06 (0.004) 0.016 (4.9 � 10�4)
INTERCEP (white) 0.90 0.95 31.65 (6.76) 3.86 (0.14)
INTERCEP (red) 0.88 0.95 24.92 (6.28) 3.38 (0.127)
PCQ �0.20 0.92 0.22 (0.006) 0.034 (0.002)
CPD �0.16 0.88 0.31 (0.008) 0.056 (0.003)
NEARN �0.03 0.78 0.81 (0.004) 0.018 (0.002)
POINTFREQ 0.47 0.77 6.70 (0.76) 0.586 (0.052)
CLOSIND 0.00 0.75 6.79 (0.15) �0.771 (0.071)

a INTERCEP (subset) ¼ line-intercept method (sections of line used for analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼ small-
rectangular quadrat method; SMALCIRC ¼ small-circular quadrat method; STEPOINT ¼ modified step-point method; CLOSIND ¼ closest-
individual method; NEARN ¼ nearest-neighbor method; CPD ¼ corrected-point-distance method; PCQ ¼ point-centered-quarter method;
AOR ¼ angle-order method; WQ ¼ wandering-quarter method.

b The maximum-likelihood estimate of l used for transformation following the Box–Cox procedure.

Table 3. Performance of experimental methods for predicting simulated rice
densities based upon root mean squared error (RMSE) and mean error
(Bias). Methods are listed in order of increasing RMSE. � ¼ Value
significantly different from zero at a ¼ 0.05.

Methoda RMSE Bias

STEPOINT 8.3 �3.5
SMALCIRC 17.0 1.0
SMALREC 19.9 1.2
INTERCEP (all) 45.4 �15.5
WQ 54.0 �5.0
INTERCEP (red) 54.8 �10.1
INTERCEP (white) 56.3 �20.9
PCQ 95.6 12.7
POINTFREQ 164.1 �99.0�

NEARN 177.3 �90.2�

CLOSIND 218.7 17.2
AOR 267.4 �214.5�

CPD 380.0 122.9�

a INTERCEP (subset) ¼ line-intercept method (sections of line used for
analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼
small-rectangular quadrat method; SMALCIRC ¼ small-circular quadrat
method; STEPOINT ¼ modified step-point method; CLOSIND ¼
closest-individual method; NEARN ¼ nearest-neighbor method; CPD ¼
corrected-point-distance method; PCQ ¼ point-centered-quarter
method; AOR ¼ angle-order method; WQ ¼ wandering-quarter
method.
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critical to successfully implement these methods. The more
negative bias for CLOSIND, NEARN, CPD, and PCQ in
field data than in simulations, where imperfect detectability
and measurement error are nonexistent, suggests that im-
perfect detectability of rice seeds and measurement error in
the field might cause the bias noted. Yet another potential
mechanism that could cause bias in density estimates when

using distance-based methods is the spatial dispersion of
seeds. Some methods, such as CLOSIND and NEARN,
assume a random dispersion pattern of objects. Although we
used methods designed to correct for nonrandom dispersion
patterns (CPD, AOR, and WQ), none of these performed
well. Bias for CPD and AOR was large and in opposite
directions for both simulated and field data. This discrepancy
in the direction of bias might be caused by the dispersion
pattern of rice seeds varying among samples, so that the

Table 4. Performance of experimental methods based upon regression of raw data from the field to predict rice-mass density on the ground in the Sacramento
Valley, California, USA, in 2009. Methods are presented in order of decreasing adjusted R2. All models had a posterior probability >0.999 relative to a null
model except STEMDEN, which had probability ¼ 0.113 relative to a null model.

Experimental methoda lb Adjusted R2 Intercept (SE) Slope (SE)

INTERCEP (red) 0.54 0.90 6.5 (1.5) 0.28 (0.024)
POINTFREQ 0.27 0.87 2.5 (0.17) 0.071 (0.007)
PCQ �0.17 0.86 0.29 (0.013) 0.027 (0.003)
SMALREC 0.64 0.85 10.57 (3.15) 0.077 (0.008)
AOR �0.10 0.84 0.47 (0.014) 0.014 (0.002)
INTERCEP (all) 0.51 0.84 6.51 (1.58) 0.11 (0.012)
CPD 0.29 0.82 7.28 (0.28) �0.90 (0.11)
WQ 0.19 0.82 3.83 (0.12) �0.24 (0.028)
CLOSIND 0.35 0.81 10.32 (0.45) �1.38 (0.17)
SMALCIRC 1.00 0.76 88.32 (36.68) 0.47 (0.067)
NEARN 0.36 0.74 11.82 (0.69) �1.68 (0.26)
INTERCEP (white) 0.53 0.71 8.55 (2.38) 0.22 (0.036)
STEPOINT 0.68 0.70 20.76 (7.78) 0.60 (0.10)
STUB 0.51 0.32 27.73 (1.59) �0.092 (0.015)
STEMDEN 0.57 NA 27.04 (1.34) NA

a INTERCEP (subset) ¼ line-intercept method (sections of line used for analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼
small-rectangular quadrat method; SMALCIRC ¼ small-circular quadrat method; STEPOINT ¼ modified step-point method; CLOSIND ¼
closest-individual method; NEARN ¼ nearest-neighbor method; CPD ¼ corrected-point-distance method; PCQ ¼ point-centered-quarter method;
AOR ¼ angle-order method; WQ ¼ wandering-quarter method.

b The maximum-likelihood estimate of l used for transformation following the Box–Cox procedure.

Figure 2. Relationship between the sums of seed counts in 30 10-cm red
sections using INTERCEP (red sections of line) and rice-mass density on
the ground in corresponding control plots in the Sacramento Valley,
California, USA, September and October 2009. Circles represent individual
simulations and corresponding density estimates using each experimental
method. The solid line is the least-squares regression, interior finely dotted
lines represent the 95% confidence interval for the line, and the outer dashed
lines indicate the 95% prediction interval.

Table 5. Performance of field implementation of experimental methods for
predicting rice-mass density on the ground based upon root mean squared
error (RMSE) and mean error (Bias) in the Sacramento Valley, California,
USA, in 2009. Methods are listed in order of increasing RMSE. � ¼ Value
significantly different from zero at a ¼ 0.05.

Experimental methoda RMSE Bias

SMALREC 81.6 24.8
INTERCEP (red) 92.3 54.5
INTERCEP (all) 110.6 58.8
INTERCEP (white) 141.2 63.1
POINTFREQ 147.9 �78.7
CLOSIND 178.0 �87.8
PCQ 192.9 �77.4
SMALCIRC 245.2 133.9
NEARN 268.0 �150.8�

STEPOINT 338.9 229.4�

CPD 378.7 �322.8�

WQ 463.4 124.5
AOR 996.8 762.0�

a INTERCEP (subset) ¼ line-intercept method (sections of line used for
analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼
small-rectangular quadrat method; SMALCIRC ¼ small-circular quadrat
method; STEPOINT ¼ modified step-point method; CLOSIND ¼
closest-individual method; NEARN ¼ nearest-neighbor method; CPD ¼
corrected-point-distance method; PCQ ¼ point-centered-quarter
method; AOR ¼ angle-order method; WQ ¼ wandering-quarter
method.
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correction applied in the estimating equations was inappro-
priate in some instances. In the spirit of developing a rapid
assessment method, however, applying different calculations
for each sample was considered infeasible.
In general, we recommend using quadrat-based methods

for estimating densities of rice. Because our goal was to
determine rice seed densities, the most parsimonious method

is to measure sample densities and convert these densities to
the desired units. The high density of seeds, resulting in most
quadrats of most sizes (except for POINTFREQ) containing
�1 rice seed, is one reason quadrat-based methods perform
well for determining seed densities. Provided that enough
samples are collected and sampling is random, quadrat-based
methods are relatively insensitive to the spatial dispersion

Figure 3. Estimated rice-mass density on the ground determined using experimental methods versus actual rice-mass density on the ground as determined in
control plots in the Sacramento Valley, California, USA, September and October, 2009. Circles represent individual samples and corresponding density
estimates using each experimental method. (A) INTERCEP ¼ line-intercept (all sections of tape), (B) INTERCEP (red sections of tape), (C) INTERCEP
(white sections of tape), (D) POINTFREQ ¼ point-frequency, (E) SMALREC ¼ small-rectangular frames, (F) SMALCIRC ¼ small-circular frames,
(G) STEPOINT ¼ step-point, (H) CLOSIND ¼ closest-individual, (I) NEARN ¼ nearest-neighbor, (J) CPD ¼ corrected-point-distance, (K)
PCQ ¼ point-centered-quarter, (L) AOR ¼ angle-order, and (M) WQ ¼ wandering-quarter. The line in each plot represents perfect correspondence
between estimated and actual densities.

Halstead et al. � Rice Availability in California 389



pattern of seeds (Engeman et al. 1994). Although imperfect
detectability can affect counts of seeds in quadrats, the small,
well-defined search area that a quadrat provides helps to
minimize errors of detection. Quadrat-based methods are
also easy to implement in the field, provided that quadrats are
not so large as to make counting seeds tedious and error-
prone. The INTERCEP method meets this criterion.
Distance-based methods are not without their merits, how-
ever. These methods are particularly useful for large, easy-to-
detect objects that exist at low densities (Engeman et al.

1994, Ludwig and Reynolds 1988). In these situations,
imperfect detectability is less problematic and establishing
quadrats of a reasonable size, but large enough that most
counts are nonzero, is impractical. It is for these situations,
such as determining the density of trees or shrubs, that
distance-based methods of estimating density were devel-
oped. For determining the density of small, difficult-to-
detect objects occurring at high densities, however, we found
that distance-based estimation of density was ineffective.
Even with the use of quadrats, it might be desirable to use

linear regression, rather than simple density conversions, to
predict the mass density of rice based upon seed counts in
quadrats. Unlike using simple scaling relationships, linear
regression allows one to incorporate uncertainty in prediction
into the estimated mass density. In particular, Bayesian
analysis of the linear regression model would allow simple
calculation of a posterior predictive distribution for rice mass
density that properly accounts for propagation of error in
prediction (Kéry 2010, Link and Barker 2010). Although
multiple samples implemented in any chosen method will
provide a measure of variance of the estimates, error in the
predictive relationship itself, as might occur when trying to
determine buffer distances for techniques like INTERCEP
or POINTFREQ , is not accounted for by using simple
scaling relationships.
Because our goal was to develop a rapid assessment method

that could be completed in the field, we desired a way to
quickly estimate not only the density of rice on the ground,
which our methods were designed to measure, but also the
amount of rice in the straw layer. The amount of rice seed
remaining in straw is nonnegligible (Miller et al. 1989), and
is also available as forage for waterfowl. Of the methods we
tested, the density of rice seeds on the ground best predicted
the density of rice seeds in the straw. The positive relation-
ship between these 2 quantities can be used to predict the
density of rice remaining in the straw. Quality of prediction,
however, declines as rice density increases (Fig. 4).

Table 6. Prior and posterior probabilities of models for predicting rice-mass density in straw in the Sacramento Valley, California, USA, in 2009. Models are
listed in order of decreasing posterior probability.

Model Prior probability BICa Posterior probability

Ground density 0.25 �302.98 1.00
STUB 0.25 �253.19 0.00
Null 0.25 �235.43 0.00
STEMDEN 0.25 �231.07 0.00

a Bayesian Information Criterion.

Table 7. Prior and posterior probabilities of models examining the effect of time period (1985 vs. 2009) on the relationship between rice-mass density on the
ground and rice-mass density in the straw in the Sacramento Valley, California, USA. Models are listed in order of decreasing posterior probability.

Model Prior probability BICa Posterior probability

Ground density 0.25 �213.15 0.71
Ground density þ period 0.25 �211.15 0.26
Ground density � period 0.25 �206.77 0.03
Period 0.25 �149.35 0.00

a Bayesian Information Criterion.

Figure 4. Estimated rice-mass density in the straw determined from control
plots versus rice-mass density on the ground in the control plots in harvested
rice fields in the Sacramento Valley, California, USA, September and
October 2009 (circles), and in 1985 (black dots). The solid line is the
least-squares regression, interior finely dotted lines represent the 95% con-
fidence interval for the line, and the outer dashed lines indicate the 95%
prediction interval.
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Incorporating data from 1985 indicated that the relationship
between the density of rice on the ground and the density
of rice in the straw has remained similar through time.
Although unchanged in nearly 25 yr, the relationship be-
tween the density of rice on the ground and the density of rice
in the straw should be periodically evaluated to account for
changes in harvester efficiency. A correction factor for rice
remaining in straw is obviously unnecessary for fields in
which straw has been baled, burned, or a stripper header
used.

MANAGEMENT IMPLICATIONS

Based upon accuracy of estimation, time efficiency in the
field, and overall cost-effectiveness, the best method for
estimating the density of waste rice is the INTERCEP
method. The time required by this method can be decreased
by counting every other 10-cm section with no apparent loss
of precision. The only method that had better accuracy
(SMALREC) took 3 times longer to conduct in the field,
required specialized equipment, and did not perform statisti-

Table 8. Time required to conduct one sample of eachmethod in the field experiment, the number of samples required to detect 1% annual change over 10 yr in
95% of simulations and sampling at 5-yr intervals, and sampling time required per sampled year to achieve the required number of samples to detect the trend
based upon data collected in the Sacramento Valley, California, USA, in 2009. Methods are presented in order of increasing total time required.

Methoda Min/sample (SE)b No. of samples Total time (hr)

CLOSINDc 7.5 1,210 150.4
INTERCEP (red)d 19.9 510 168.6
INTERCEP (white)d 19.9 550 181.8
STEPOINT 25.5 (4.9)x,y 790 335.8
INTERCEP (all) 39.7 (5.1)w,x,y 510 337.2
POINTFREQ 21.2 (2.6)y,z 1,050 370.1
NEARNe 15.0 2,150 537.2
CPD 22.4 (2.2)y 1,500 559.4
SMALREC 56.5 (5.3)w 740 696.8
AOR 55.9 (7.1)w 910 847.4
PCQ 55.9 (7.1)w 1,030 959.1
SMALCIRC 48.8 (4.7)w 1,220 991.25
WQ 44.2 (3.3)w,x 1,720 1,267.1
STEMDEN þ STUB 7.1 (0.4)z NA NA

a INTERCEP (subset) ¼ line-intercept method (sections of line used for analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼
small-rectangular quadrat method; SMALCIRC ¼ small-circular quadrat method; STEPOINT ¼ modified step-point method; CLOSIND ¼
closest-individual method; NEARN ¼ nearest-neighbor method; CPD ¼ corrected-point-distance method; PCQ ¼ point-centered-quarter method;
AOR ¼ angle-order method; WQ ¼ wandering-quarter method.

b Different superscripts placed on values represent statistically significant pairwise differences.
c Min/sample for CLOSIND ¼ CPD/3.
d Min/sample for INTERCEP (red) and INTERCEP (white) ¼ INTERCEP (all)/2.
e Min/sample for NEARN ¼ CPD � 0.67.

Table 9. Method rankings for predicting rice densities in the field experiment according toR2, root mean squared error (RMSE), bias, time, number of samples
required, and total sampling time required, based upon field data from the Sacramento Valley, California, USA, in 2009. Low-ranking models perform better
than high-ranking models (i.e., 1 is better than 10). Models are listed in order of increasing mean rank.

Methoda R2 RMSE Bias Time No. samples Total time Mean rank

INTERCEP (red) 1 2 2 3 1 2 1.8
INTERCEP (all) 6 3 3 8 1 5 4.3
INTERCEP (white) 12 4 4 3 3 3 4.8
POINTFREQ 2 5 6 5 8 6 5.3
SMALREC 4 1 1 13 4 9 5.3
CLOSIND 9 6 7 1 9 1 5.5
PCQ 3 7 5 11 7 11 7.3
STEPOINT 13 10 11 7 5 4 8.3
NEARN 11 9 10 2 13 7 8.7
CPD 7 11 12 6 11 8 9.2
AOR 5 13 13 11 6 10 9.7
SMALCIRC 10 8 9 10 10 12 9.8
WQ 8 12 8 9 12 13 10.3

a INTERCEP (subset) ¼ line-intercept method (sections of line used for analysis); POINTFREQ ¼ point-frequency method; SMALREC ¼
small-rectangular quadrat method; CLOSIND ¼ closest-individual method; PCQ ¼ point-centered-quarter method; STEPOINT ¼ modified
step-point method; NEARN ¼ nearest-neighbor method; CPD ¼ corrected-point-distance method; AOR ¼ angle-order method; SMALCIRC ¼
small-circular quadrat method; WQ ¼ wandering-quarter method.
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cally better than INTERCEP. Where necessary, the density
of rice seeds in straw can be calculated from the ground
density using the provided equation, although this equation
should be re-evaluated periodically. In general, we recom-
mend that future studies employ INTERCEP to calculate
rice seed densities because of its simple implementation and
calculation, and relative robustness to imperfect detectability
and varying dispersion patterns. Although we only tested
methods to measure rice seed densities, we suspect that
methods that performed well for rice seeds will also work
well for other small, visible, easily counted seeds. To properly
account for propagation of error, we recommend using linear
regression, rather than simple scaling relationships, to pre-
dict the density of rice. This method provides a valuable tool
for monitoring trends in rice harvester and harvest efficien-
cies, and for waterfowl managers to develop wetland resto-
ration and rice-field enhancement goals for wintering
waterfowl. Given millions of federal dollars being spent
on subsidies, the habitat potential of agricultural easements,
and need to identify key wildlife-friendly agricultural areas
during periods of drought, these analyses are critical for
managers to prepare viable field analyses for landscape-level
conservation.
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