Ecological Applications, 23(3), 2013, pp. 654—-669
© 2013 by the Ecological Society of America

Mapping behavioral landscapes for animal movement:
a finite mixture modeling approach

JEFF A. TRACEY,"® Jun ZHU,2 ERrIN BOYDSTON,3 Lisa LYREN,4 ROBERT N. FISHER,1 AND KEVIN R. CrOOKS®

'u.s. Geological Survey, Western Ecological Research Center, 4165 Spruance Road, San Diego, California 92101 USA
Department of Statistics and Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706 USA

3U.S. Geological Survey, Western Ecological Research Center, Thousand Oaks, California 91360 USA
4U.S. Geological Survey, Western Ecological Research Center, Carlsbad, California 92011 USA

SDepartment of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado 80523 USA

Abstract. Because of its role in many ecological processes, movement of animals in
response to landscape features is an important subject in ecology and conservation biology. In
this paper, we develop models of animal movement in relation to objects or fields in a
landscape. We took a finite mixture modeling approach in which the component densities are
conceptually related to different choices for movement in response to a landscape feature, and
the mixing proportions are related to the probability of selecting each response as a function of
one or more covariates. We combined particle swarm optimization and an expectation-
maximization (EM) algorithm to obtain maximume-likelihood estimates of the model
parameters. We used this approach to analyze data for movement of three bobcats in
relation to urban areas in southern California, USA. A behavioral interpretation of the models
revealed similarities and differences in bobcat movement response to urbanization. All three
bobcats avoided urbanization by moving either parallel to urban boundaries or toward less
urban areas as the proportion of urban land cover in the surrounding area increased.
However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided
urbanization at lower densities and responded strictly by moving parallel to the urban edge.
The other two bobcats, which were both residents and occupied similar geographic areas,
avoided urban areas using a combination of movements parallel to the urban edge and
movement toward areas of less urbanization. However, the resident female appeared to exhibit
greater repulsion at lower levels of urbanization than the resident male, consistent with
empirical observations of bobcats in southern California. Using the parameterized finite
mixture models, we mapped behavioral states to geographic space, creating a representation of
a behavioral landscape. This approach can provide guidance for conservation planning based
on analysis of animal movement data using statistical models, thereby linking connectivity

evaluations to empirical data.
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INTRODUCTION

Movement of individual animals in response to
landscape features plays a role population dynamics,
population genetics, disease transmission, and many
other ecological processes; therefore, understanding the
movement of individual animals in landscapes is of great
importance in many areas of ecology and conservation
biology (van Vuren 1998, Tracey 2006, Morales et al.
2010). Landscape features may consist of discrete
objects or continuous fields. Conceptually, object
orientation refers to movement in relation to objects in
a landscape such as prey items or resource patches
(Jander 1975, Lima and Zollner 1996). Further, taxis
refers to movement in response to continuous fields such
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as temperature, moisture, or elevation (i.e., gradients;
Benhamou and Bovet 1992). Qualitatively, an animal
may show attractive, repulsive, or neutral movement
responses to these landscape features (Jander 1975,
Lima and Zollner 1996). Movement data for individual
animals are often collected using field techniques such as
radiotelemetry or Global Positioning System (GPS)
telemetry. Data on landscape features are often collected
via remote sensing, ground measurement using GPS, or
other techniques. Due to these technological advances,
data required for analyzing movement behavior in
response to landscape features are becoming increasing-
ly available.

Over the past decade, great advances have been made
in modeling animal movement behavior. This includes
the development of a general state-space modeling
(SSM) framework for animal movement in which true
animal locations are modeled by a process model, while
the probability of the data conditional on the true state
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is described by an observation model (Patterson et al.
2008, Schick et al. 2008). The state-space modeling
approach has been applied in several movement
modeling efforts. Tracey et al. (2005) developed a set
of statistical models for the analysis of individual animal
movement data in relation to a single type of landscape
feature. In these models, the concentration parameter of
a von Mises distribution for response angle changes
based on the animal’s location relative to the location of
an object. This approach allows for nonlinear models,
but the forms of nonlinearity are restricted to exponen-
tial and logistic functions, and the movement response is
based on a single probability density. Recently, animal
movement models that combine movement, resource
selection, and home range of an animal have been
developed (e.g., Dalziel et al. 2008, Christ et al. 2008,
Johnson et al. 2008, Forester et al. 2009). Most of these
models incorporate covariates in a probability density
function of bivariate locations rather than turn angles
and move length, and it is not always straightforward to
assess the effect of landscape features. Furthermore,
these models are formulated using techniques such as
kernel smoothing, and the statistical inference is often
computationally expensive. More recently, Hooten et al.
(2010) developed agent-based models for movement in
which latent variables for residency and movement were
modeled on a lattice as a function of environmental
covariates with the same spatial support. This approach
is likely to have many useful applications, but it requires
space to be discretized and inference about the nature of
movement appears to be indirect, mediated through the
latent variables. Tracey et al. (2011) developed a
semiparametric regression approach using neural net-
works to relate the movement model parameters of
probability distributions to covariates associated with
landscape features without having to discretize space.
While fully connected feedforward neural networks have
proven useful in modeling animal movement (Dalziel et
al. 2008, Tracey et al. 2011), neural network parameters
are not directly interpretable in terms of animal
behavior, so inference can be made only about the
relationship between movement and landscape features
in terms of the responses produced by the network.
Other network-based approaches to modeling move-
ment behavior are possible. For example, Jacobs et al.
(1991) and Jordan and Jacobs (1994) developed mixture
of experts (ME) and hierarchical mixture of experts
(HME) models in the field of artificial intelligence. In
this framework, the model consists of a set of expert
networks, where each expert network models a response
to a vector of inputs. However, some expert networks
perform better in some regions of the input space than
others. Thus, a second gating network controls the
selection of expert networks based on the position in
input space. From a statistical perspective, these can be
viewed as finite mixture models (FMMs). In FMMs, a
distribution is formed by a weighted sum of component
probability densities (McLachlan and Peel 2000). The
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weights, referred to as mixing proportions, sum to 1.
The mixing proportions can depend on inputs (i.e.,
covariates; McLachlan and Peel 2000).

We consider finite mixture models as a viable
alternative approach for modeling complex movement
behavior in relation to a landscape feature consisting of
either a continuous field or discrete objects. From a
biological perspective, the components are considered to
be different behavioral responses that produce the
observed move angles, move distances, or both over
discrete time intervals. These responses are interpreted
as movement patterns with specific functions, as in the
movement phases described by Nathan et al. (2008) or
behavioral modes described by Patterson et al. (2008).
The mixing proportions, which are the probabilities of
selecting each response, describe the selection of a
response by an animal with a given local environment
and other factors such as an animal’s internal state.
These factors are described by covariates associated with
each observation and are used to model the mixing
proportions. For example, if an animal is closer to a
particular object, then it may have a higher probability
of choosing to avoid the object. Thus, our approach
contains many of the elements in the general conceptual
framework for modeling animal movement described by
Nathan et al. (2008). As a result, the FMMs we describe
expand the capabilities of the models presented by
Tracey et al. (2005) because they allow movement
responses to change in complex ways and they allow for
a range of movement responses to be utilized. Further-
more, unlike neural networks, a behavioral interpreta-
tion of the finite mixture model parameters is possible.

Lima and Zollner (1996) discussed the need for
relating animal behavior and landscape features, and
described information-based modeling approaches in
which animal behavior is dependent on the surrounding
landscape. More recently, Bakian et al. (2012) proposed
the concept of a behavioral landscape in which animal
behaviors are mapped by a model to geographic space.
They demonstrated their approach for foraging and
vocalization behavior of Willow Flycatchers (Empido-
nax traillii adastus). In their study, foraging and
vocalization behaviors could be directly observed and
associated with the animal’s location. However, for
studies of movement via biotelemetry, movement
behavioral states of a study animal are typically not
directly observed. However, using the FMMs, we are
able to both group observed movements into behavioral
states and characterize movement behavior within the
states. Furthermore, these models directly relate move-
ment behavior and the local landscape as described by
Lima and Zollner (1996).

Mammalian carnivores such as bobcats (Lynx rufus)
are sensitive to habitat loss and fragmentation due to
urbanization (Crooks 2002, Gehrt et al. 2010), a leading
agent of habitat destruction and primary threat to
biodiversity (Wilcove et al. 1998, Czech et al. 2000,
McKinney 2002, McDonald et al. 2008). These impacts



Ecological Applications

656 JEFF A. TRACEY ET AL. Vol. 23, No. 3
TaBLE 1. Bobcat (Lynx rufus) data summary from remote-sensing sources in Orange County, California, USA, in 2003.
Bobcat Gender Tracking interval No. observations Area of use (km?)t Urbanization]
LYRU, male Jan—Jul 184 3.97 0.00-0.45
LYRU, female Jan—Jul 142 2.16 0.00-0.36
LYRU; male Jan-Mar 195 24.19 0.00-0.14

+ Area based on a 95% contour of fixed kernel density.

i Range of proportion of urbanization at observed bobcat locations.

are particularly evident in coastal southern California, a
hotspot of biodiversity that has experienced rapid
urbanization, leading to declines in the distribution
and abundance of numerous species (Dobson et al.
1997), including bobcats (Crooks 2002, Tigas et al. 2002,
Riley et al. 2003, 2006, 2010). Landscape ecologists have
identified functional connectivity, the ability of animals
to move among resource patches, as an important
characteristic of landscapes (Taylor et al. 1993, Forman
1997, Taylor et al. 2006). Changes in functional
connectivity have numerous demographic, genetic, and
epidemiological implications for wildlife (Crooks and
Sanjayan 2006). One goal of movement analysis is to
understand how landscape changes alter functional
connectivity for a species. In this paper, we applied the
FMM approach to analyze movement of bobcats in an
urbanized environment and then used the movement
models to visualize behavioral landscapes.

In the Methods, we describe bobcat data collected by
GPS telemetry and the urban land cover data. We
present the general structure of finite mixture models for
move angles and the specific models we applied to the
bobcat GPS telemetry data and urban land cover data.
We also describe an optimization procedure for obtain-
ing parameters estimates and standard errors, and
inference using the models. Finally, we describe how
to use the models to relate locations in geographic space
to bobcat movement behaviors. In the Results, we
describe the results of the analysis of bobcat movement
in relation to urban development and give an example of
a behavioral landscape generated from a model from
one of the bobcats. In the Discussion, we provide an
ecological interpretation of the results and discuss future
research directions. By mapping movement behavioral
states on the landscape, we can better understand
movement of animals in their environment, identify
areas that might enhance or inhibit functional connec-
tivity, and identify areas that pose higher risks to
animals.

METHODS
Movement and landscape data

We used data from a bobcat GPS telemetry study that
was conducted to better understand bobcat home range,
habitat use, movement response to roads, and the effects
of habitat fragmentation due to urban development in
Orange County, California, USA (Lyren et al. 2006; see
Plate 1). Bobcat locations were collected at 15- or 30-
min time intervals using a collar with a GPS receiver and

data logger placed on each study animal. Locations were
only collected during night, between the hours of 22:00
and 01:00, several nights per week.

In order to better understand bobcat movement
responses to urbanization, we applied the FMM models
to GPS telemetry data for three bobcats (a number we
deemed sufficient to assess our finite mixture modeling
approach) identified as LYRU,, LYRU,, and LYRUs.
These animals were selected for this analysis from a
larger set of 16 animals based on (1) if a 15-min
relocation time interval was used for the animals, (2) the
number of observations per animal, and (3) how many
locations were in proximity to urban areas. During
exploratory data analysis, we evaluated temporal
autocorrelation in move angles by conducting Rayleigh
tests for the uniformity of the turn angle distributions
for each bobcat. For LYRU, we rejected the null (x> =
18.383, P =0.0001), while for LYRU, (x> = 0.3855, P =
0.825) and LYRUj (x> = 1.4780, P=0.478), we failed to
reject the null. Although temporal autocorrelation in
move angles appears to be present for LYRU;, the
models we present do not assume that move angles are
identically independently distributed (iid). Rather, the
models assume that move angles are independent after
conditioning on the landscape (or other) covariates used
in the model. Often, programmed location acquisition
by the GPS receivers fails due to terrain, vegetation
cover, or lack of satellite availability. However, the
missing observations can be ignored in the analysis.
Additionally, if two consecutive locations were co-
located, then the move distance is 0.0 and the move
angle is undefined. In these cases, we omitted such
observations from the analysis. Properties of the data
for the three selected bobcats are summarized in Table 1.
Note that the movement paths of LYRU; and LYRU,
partially overlapped, while LYRUj; had a larger area of
activity that did not overlap with the others (Fig. 1).

Spatial data for 30-m resolution urban land use were
developed using impervious surface data from the
National Land Cover Database (NLCD; Homer et al.
2004) and land use from the Southern California
Association of Governments (SCAG). Areas identified
as urban, residential, or industrial use by the SCAG or
having greater than 15% impervious surface in the
NLCD data were classified as urban. This raster was
developed for a 5971.2-km? area that covered the entire
extent of Orange County and parts of Los Angeles
County, California. Within the area where bobcats were
GPS tracked (shown in Fig. 1), raster cells classified as
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FiG. 1.

Bobcat (Lynx rufus) location data were collected by Global Positioning System (GPS) telemetry, and landscape data

were compiled from remote-sensing sources in Orange County, California, USA. The map shows urban land cover in gray.
Observed move steps for bobcat LYRU, are shown in red, those for bobcat LYRU, are shown in green, and those for bobcat

LYRUSj; are shown in blue.

urban were compared to U.S. Geological Survey Digital
Orthoimagery Quarter Quadrangles (DOQQ) imagery
(available online)’ and corrected where large discrepan-
cies were found. The final urban land cover data raster
cells held an integer corresponding to a land cover
category (0 = not urban, 1 = urban; Fig. 1). Using this
categorical raster, we computed the proportion of cells
classified as urban within moving windows centered on
the raster cells with a radius 200 m. We refer to this
quantity as X, and use it as a covariate in the functions
for component mixing proportions. At each bobcat
location, we calculated the direction of increasing
urbanization using the raster of X, values. If this
raster had no slope in the first-order neighborhood
around a bobcat location, we set this direction to 0.0

7 http://nationalmap.gov

radians, which resulted in a von Mises distribution being
fit to the bobcat move angles when no urbanization is
present. The range of X, values at the observed bobcat
locations is given in Table 1.

Finite mixture model for move angles

Movement data notation.—Here we describe the
notation for the data used in the model formulations.
Let i = 1,...,I index observations for a particular
animal. For the ith observation, we let s; = (s;1, 5;2)
denote an observed location of an animal, where 7 + 1
locations at approximately regular time intervals have
been observed. These data are becoming common for
many species with increased use of GPS telemetry. Let
D; = |l;s; — s[HHz denote the move distance between
animal locations s; and s;; and let Y; = atan2(s;, —
Si2, Sir11 — Si1) denote the move angle between animal
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locations. Note that this angle is undefined if s; = s;,1;
therefore, we omit any zero-length move steps from the
analysis. Thus, the ith move can be modeled as

Siv1 =8+ D; X (cos(Y,-)7 sin(Y,»)) , (1)

where i=1,..., L

For the ith observation, A; is an observed angular
covariate related to the object or field to which we are
modeling the animal movement response. In our
analysis, 4, is the direction of a gradient in the density
of urbanization around the ith bobcat location; howev-
er, this covariate could be the angle from the ith location
to a vector-based feature such as the nearest point on a
road or the aspect of a continuous surface represented
by a raster. Further, let, j =0, ...,/ index covariates
and X;=(Xo,, ..., X,;) be a vector of covariates related
to the movement response where X ;= 1 corresponds to
the constant in the regression model. In our analysis, the
covariate X ; is the density of urbanization within 200 m
of each bobcat location, which we will refer to as Xy,
when discussing the specific models applied in this
paper. We define the response angle as R; = (Y; —
A;)mod(—mr, 7], which is the offset angle between Y; and
A;.

General model formulation—Let g =1, ..., G index
finite mixture model components. The components are
interpreted as movement behavior states of the animal,
and we typically use the term component when discussing
the model itself and movement behavior state (or simply
behavioral state) when interpreting the meaning of a
specific model. We model the ith move angle Y,, given
the angular covariate A4; as a mixture of von Mises
distributions, as follows:

G
f(Yl|Xl,At7B7n) :Zpg(xlﬁﬁ)fg(YI|Ahng) (2)
g=1

In Eq. 2, we use the multiple logit model for the mixing
proportions. The gth mixing proportion is

G -1
pe(Xi, B) = exp(B;X":) { > exp(BéX})} 3)
g=1

where X; is a vector of covariates related to the ith
observation and B = (B;,...,B;) is a vector of
parameters. The first category (g = 1) is established as
our reference category by setting B, = 0 to ensure
identifiability and By =(Bg0. - - -, Bg.s)’ Wwhen g > 1. Note
that )" ,p.(X;;p) = 1. In essence, the choice to move in an
angle described by a component distribution is a multi-
category logistic function of covariates X; associated
with the animal at location s, Moreover, the gth
component density,

fo(Yi;Aim,) = {2TE]0(K8)}71 exp{Kg cos(¥; — p, — Ai)}
)
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is a von Mises probability density function (pdf), where
Ne = (Kg K)'s e € (—m, @] is the mean response angle,
and k, > 0 is the concentration parameter. Furthermore,
{2nly(x,)} is a normalizing constant, and Io(k,) is a
modified Bessell function of the first kind and zero
order.

More complicated distributions for response angles to
landscape features may be multimodal. To accommo-
date this situation, each mixture component g may in
turn be a mixture of s, > 0 subcomponents as follows:

£Vl A mg) = " ae@ e (Vi A i ko) (5)
k=1

and
~1

a0 =expdd S expld) g - (6)
=T,

Thus, the component pdf in Eq. 5 has parameters

n = (n{?"'7n(/;),’ Where ng = (ué?K;7¢;),7 l’l’g =
(ug.la B Hg,sq),: Kg = (Kg,la ey Kg,sﬂ), and ¢’g -
(Pg1s -+ Kg,5,)' . All elements of p, are on (—m, 7], all

elements of k, > 0, and all elements of ¢, € . We let ¢,
= 0 to ensure identifiability. The behavioral motivation
for incorporating subcomponents is that once an animal
has selected a response based on the covariates, the
distribution for the response variable may still be
multimodal, and hence, better modeled as a mixture of
subcomponent distributions. An example of this case is
when an animal exhibits repulsion to a landscape feature;
it may avoid it by moving with response angle of *m/2
radians in an effort to circumvent it. This FMM
approach is in the spirit of the hierarchical mixture of
experts (HME) approach taken by Jordan and Jacobs
(1994), and reflects hierarchical decision making by an
animal. The total number of parameters in a move angle
model is (J + 1)(G — 1) + 32?:1%; — G, where J is the
number of covariates, G is the number of components,
and s, is the number of subcomponents in the gth
component. Additional models that include move dis-
tance response are described in online Appendix A.
Candidate models.—Following from the general mod-
el formulation, we considered 11 alternative move angle
models in our analysis of the bobcat data. In the first
two models (A and B; Table 2), no covariates were used
in the functions for the mixing proportions; that is, the
mixing proportions were constant. Model A had one
component and model B had two components. These
two models permitted move angle responses to the
angular covariates, but did not incorporate responses to
the landscape with respect to the mixing proportions.
Therefore, we used them for comparison to the
remaining nine models (C—K; Fig. 2 and Table 2) that
do incorporate mixing proportions as a function of
landscape covariates. In these models, the mixing
proportions were a function of a single covariate (Xyp),
the proportion of urbanization within 200 m of a bobcat
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TaBLE 2. Summary of specific models used in the examples.
Model (m) Components subl sub2 sub3 sub4 Parameters
A 1 1 0 0 0 2
B 1 2 0 0 0 5
C 2 1 1 0 0 6
D 2 2 1 0 0 9
E 2 2 2 0 0 12
F 3 1 1 1 0 10
G 3 2 1 1 0 13
H 3 2 2 1 0 16
I 4 1 1 1 1 14
J 4 2 1 1 1 17
K 4 2 2 1 1 20

Notes: The network structure for models C—K is shown in Fig. 2. Also shown are the number of
components in the model; the number of subcomponents in the first, second, third, and fourth
components, subl, sub2, sub3, and sub4, respectively; and the number of parameters in the model.

location, although the general formulation can handle
multiple covariates. The nine models can be illustrated
as a network of choices (i.e., gating networks in
hierarchical mixture of experts) terminating with a
component (or subcomponent) of the finite mixture
model (Fig. 2). For example, in model D, the animal
may choose from two components for a movement
response. One component (left) is a mixture of two
subcomponents, so the response distribution could be
bimodal. The other component (right) has only one
subcomponent, so the response would be unimodal. If
the proportion of urbanization surface is flat within the
200-m neighborhood about an animal location, we set
the angle covariate to 0.0 and fit a von Mises
distribution to the animal move angle.

Model fitting and inference

We adopted a maximum-likelihood approach for
statistical inference. However, optimization to obtain
the maximum-likelihood estimates for FMMs can be
very difficult because numerous local optima often exist.
The expectation-maximization (EM) algorithm typically
used with mixture models is prone to becoming trapped
by local optima (McLachlan and Peel 2000). To
overcome this difficulty, we employed particle swarm
optimization (PSO), a stochastic optimization algorithm
originally inspired by flocking behavior of birds, to
search for the general area of the global optimum (Poli
et al. 2007). Application of the PSO was followed by an
EM algorithm to converge on the maximum-likelihood
estimates (MLEs) for the model parameters. We provide
details of this approach in Appendix B, and examples of
fitting models to simulated data are given in Appendix
C. The optimization code was implemented in R (R
Development Core Team 2010). For the PSO step of the
procedure, we used the canonical PSO implemented in
the psoptim function (Bendtsen 2011). In the EM
algorithm, we consider each observation to be augment-
ed with a label that identifies the model component that
generated the observation. The observed data plus the
unobserved component labels constitutes the complete
data. Each iteration of the optimization procedure

consists of an expectation step (E-step) in which the
component labels are set to their expected values and a
maximization step (M-step) in which the complete data
log-likelihood is optimized. We used the R function nlm
to optimize the complete data log-likelihood in the M-
step. We obtained standard errors based on the
asymptotic variance calculated from the inverse of the
numerically computed Hessian matrix returned by the R
numDeriv package using the hessian function call on the
observed negative log-likelihood function (Gilbert
2011). Bootstrap procedures are also available for

Model C Model D Model E
Model F Model G Model H
Model | Model J Model K

AN

Fic. 2. An illustration of the gating network structure for
finite mixture models C-K. Each row, from top to bottom,
corresponds to models with an increasing number of compo-
nents. Each column, from left to right, corresponds to models
with an increasing number of model components with two
subcomponents. Given sufficient data, any number of compo-
nents and subcomponents may be specified. Nodes at the root
of the trees shown as squares represent multiple logit functions,
nodes shown as diamonds represent logistic functions for
subcomponent selection, and leaf (terminal) nodes shown as
circles represent von Mises distributions. Additional details for
the models are given in Table 2.
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estimating the standard errors for the model parameters
(see, e.g., McLachlan and Peel 2000), but they tend to be
more computationally intensive.

We used an information-theoretic approach to model
selection (Burnham and Anderson 2002). For each
model from A to J, we computed the incomplete data
negative log-likelihood value, the small sample variant
of Akaike’s information criterion, AIC., AAIC, values,
the rank of each model based on AAIC,, and the Akaike
weight, W, for each model. Akaike’s information
criterion (AIC) is interpreted as the relative expected
Kullback-Leibler distance between a model and the true
process that generated the data; thus, the model with the
lowest AIC. is estimated to be the model that best
approximates this unknown process. The AAIC. value
for a model is calculated as its AIC, minus the AIC, of
the best model. Thus, for the best model AAIC.=0. The
models are then ranked relative to each other based on
AAIC, in ascending order. The model probability, or
Akaike weight, for a model is computed as W =
exp{—(1/2)AAIC.}/Zexp{—(1/2)AAIC.}. We can consid-
er the weight of evidence for all models or perform
multi-model inference, but here we focus our presenta-
tion and interpretation of the results on the model with
the lowest AIC..

Mapping behaviors to the landscape

Producing the behavioral landscapes for each bobcat
from the finite mixture models consisted of two steps.
First, based on the component (i.e., movement behavior
state) probability density functions for response angle in
Eq. 4, we were able to quantitatively and qualitatively
describe the movement response associated with each
state. The attractive, repulsive, and neutral qualitative
movement responses can be interpreted via the fitted
movement models. In the models we have considered
here, a neutral response occurs when the distribution of
the response angle is fairly uniform; that is, it has a low
concentration parameter. Attraction occurs when the
mean angle of the response distribution is near 0.0 and
increases with the concentration parameter. A repulsive
response can take two forms. The animal may show
repulsion by moving away from the landscape feature if
the mean response angle is near 7. The strength of the
repulsion will increase with the concentration parameter
of the response angle distribution. Alternatively, an
animal may show a repulsive response by moving
perpendicular to the angle of a landscape feature. In
this case, the mean response angle will be near /2 and
the repulsion will increase with the concentration
parameter. In our example, the landscape features are
areas classified as urban development, and our covariate
related to this feature is Xyp. This response then relates
to movement toward areas of roughly the same amount
of urbanization around the bobcat; that is, parallel to
the edge of the urban area. Therefore, we refer to this as
a parallel response. An animal can engage in a parallel
response by turning approximately m/2 radians to the
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left or right. We hypothesize that an animal will assume
this response in order to avoid a landscape feature when
it interferes with movement toward another goal. These
different qualitative responses may occur over different
ranges of the covariate(s) used to model the mixing
proportions.

In the second step, we applied the parameterized
multiple logit model for mixing proportions given by Eq.
3 to the raster for the urban covariate Xy, which yields
the probability of each behavioral state at each raster
cell. These probability surfaces for each behavioral state
were combined into a single map by assigning the
component number (g) for the most probable state to
each cell in a categorical raster. Taken together, we were
able to identify the most probable behavioral response
to urban development at each point in space and
describe the nature of that response.

From these maps, we can make predictions about the
permeability of different areas of a landscape or evaluate
the functional connectivity of movement corridors. For
example, some corridors may be dominated by an urban
avoidance response (Fig. 3A). This may occur if a
corridor is too narrow. Others might be strongly
influenced by a tendency to move parallel to the urban
edge, which may actually enhance connectivity by
directing movement through the corridor (Fig. 3B). If
a corridor is wide enough, movement in the interior may
be similar to movements where there is no influence of
urbanization (Fig. 3C). In this case, movement may
actually be slower through these areas because of a lack
of strong directionality to the movement and potentially
higher residency due to the availability of resources.
Thus, in this approach, connectivity is dictated by
landscape structure and movement behavior, which is
perfectly consistent with definitions of functional con-
nectivity (Taylor et al. 1993, 2006).

RESULTS
Parameter estimation and model selection

The resident male bobcat LYRU, showed little
response when the proportion of urbanization (Xy)
was low, but then transitioned through movement
parallel to the urban edge to strong movement away
from urbanization as X, increased. The best approx-
imating model for LYRU; was model H (Table 3).
Parameters and standard errors for this model are given
in Table 4. All other models had AAIC, > 2.0, and four
models had AAIC, > 10.0 (Table 3). Model H had three
components (Fig. 2). The first and second components
had two subcomponents each, and the third component
had one subcomponent. The mixing proportion for the
first component was near 0.0 when Xy, = 0.0, increased
to a peak of about 0.7 when X, ~ 0.18, and then
declined back to near 0.0 as X, increased to its
maximum observed value of 0.45 (Fig. 4). The first
component had one subcomponent that produced
strong movement parallel to the urban edge (to the left)
and a second subcomponent that produced movement
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FiG. 3. A conceptual illustration of the application of a behavioral landscape to evaluating functional connectivity through an
urbanized area. Dark gray areas are those where an animal shows strong avoidance of the landscape. Light gray shows areas where
the animal most likely moves parallel to the landscape features it avoids. White areas are those where the animal responds in a
neutral or attractive manner. The white-filled points with arrows show animal response to different parts of the landscape. In panel
(A), movement through the corridor is unlikely because of the avoidance response that dominates the central part of the area. In
panel (B), movement through the area is likely; in this case, the animal may actually move rapidly through the area because of its
parallel response to the urban edge. In panel (C), the corridor is intact; however, movement may be less directional because the
weak movement response to urbanization in the interior area is less likely to direct movement through it. In this case, movement

through the area may be slower than in panel (B).

TaBLE 3. Results of fitting 11 alternative models to move angle data for three bobcats.

Bobcat and model —{(B,M) AIC, AAIC, Rank w
LYRU;,
A 334.62 673.32 10.76 8 0.00
B 332.51 675.36 12.81 9 0.00
C 331.89 676.26 13.71 11 0.00
D 326.02 671.07 8.52 6 0.01
E 324.77 675.36 12.81 10 0.00
F 324.99 671.26 8.71 7 0.01
G 319.09 666.32 3.77 3 0.09
H 313.65 662.55 0.00 1 0.62
1 319.25 668.98 6.43 5 0.02
J 313.62 664.92 2.37 2 0.19
K 311.10 667.36 4.81 4 0.06
LYRU,
A 258.12 520.33 7.94 10 0.01
B 256.14 522.72 10.33 11 0.00
C 250.83 514.28 1.90 4 0.13
D 248.08 515.53 3.14 6 0.07
E 246.82 520.06 7.68 9 0.01
F 24591 513.50 1.11 2 0.19
G 241.77 512.38 0.00 1 0.34
H 239.52 515.39 3.00 5 0.08
1 241.48 514.26 1.87 3 0.13
J 239.47 517.89 5.50 8 0.02
K 235.28 517.50 5.12 7 0.03
LYRU;
A 358.38 720.83 20.34 11 0.00
B 348.60 707.51 7.02 8 0.02
C 348.38 709.21 8.71 9 0.01
D 343.88 706.73 6.24 6 0.02
E 338.37 702.45 1.96 2 0.20
F 343.02 707.23 6.73 7 0.02
G 336.24 700.49 0.00 1 0.52
H 335.61 706.28 5.78 5 0.03
1 341.08 712.50 12.00 10 0.00
J 333.59 704.65 4.15 4 0.07
K 329.28 703.38 2.89 3 0.12

Notes: The fitted response angle density for the model with the lowest AIC, for each bobcat is
shown in Fig. 4. The negative log-likelihood for each model is shown by — £(B,n); AIC, is the small-
sample adjusted AIC; AAIC, is the difference between the model AIC, and the smallest AIC.; and
W is the model weight. Rank shows the rank of the model according to AIC, in ascending order.
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TaBLE 4. Parameter estimates via maximum likelihood and standard errors (SE) for the top-ranked model H for bobcat LYRU,,
model G for bobcat LYRU,, and model G for bobcat LYRUsj;.

LYRU, LYRU, LYRU;
Component Parameter Estimate SE Estimate SE Estimate SE
1 M1 1.98 0.07 —1.41 0.03 1.26 0.35
1 Wi —0.37 0.13 —2.40 0.12 —1.55 0.05
1 In(x; ;) 3.20 0.56 5.07 0.56 —1.09 0.40
1 In(x; 2) 2.75 0.68 1.60 0.50 4.32 0.72
1 b12 —0.35 0.50 1.28 0.53 —2.34 0.40
2 Ba.0 —8.61 4.59 —6.94 4.58 —4.17 1.58
2 B2.1 38.80 19.92 37.31 20.12 48.65 21.33
2 Mo 2.69 0.03 2.45 0.07 -1.22 0.15
2 M2 —1.11 0.61
2 In(x,,1) 5.13 0.53 4.03 0.72 2.81 0.85
2 In(x,.2) —0.80 0.67 e e e e
2 2 1.43 0.46
3 Bs.o 6.41 2.96 0.38 0.39 -9.79 4.73
3 Bs.1 —48.96 22.18 8.67 5.55 94.76 44.43
3 U3,1 2.11 0.40 1.18 0.40 1.63 0.04
3 In(xs,1) —1.11 0.42 —0.77 0.60 5.38 0.88

Notes: Parameters are as follows: i, is the mean angle of the von Mises distribution for component g, subcomponent &; k,  is
the concentration parameter of the von Mises distribution for component g, subcomponent k; ¢, is the mixing proportion for
component g, subcomponent k; B, ; is the regression parameter for the component g, covariate j. This parameter is used in the
multi-category logistic function used to compute the mixing proportion for component g as a function of X,,4,. Ellipses (. . .) indicate

that the parameter was not part of the model.

toward areas with more urbanization. The mixing
proportion for the second component started at near
0.0 when Xy = 0.0 and increased to near 1.0 as Xy,
increased to 0.45, and had an inflection point at
approximately 0.225 (Fig. 4). The second component
had one subcomponent that produced strong movement
away from urban areas, and a second subcomponent
that was roughly uniform. The mixing proportion for
the third component started at near 1.0 when X, =0.0,
declined to near 0.0 when X4, reached 0.2, and had an
inflection point at approximately X, = 0.125 (Fig. 4).
The third component produced a response angle
distribution that was roughly uniform. In summary,
the model predicts movement roughly at random
relative to the direction of increasing urbanization,
transitioning to movement either toward areas of
increasing urbanization or parallel to the urban edge,
and then finally movement away from urbanized areas
as the degree of urbanization increases (Fig. 4).

The resident female bobcat LYRU, had a similar
response to LYRU, at high levels of X, but showed
more of a tendency to move parallel to the urban edge at
lower levels of Xy,. The best approximating model for
LYRU, was model G (Table 3). Parameters and
standard errors for this model are given in Table 4.
Seven of the models (A, B, D, E, H, J, and K) had
AAIC, > 2.0, and model B had AAIC, > 10.0. Model G
had three components. The first component had two
subcomponents, and the second and third components
had one subcomponent each (Fig. 2, Table 3). The
mixing proportion for the first component was codom-
inant with component 3 when X, = 0.0 and declined
gradually, in a nearly linear fashion, as X, increased
(Fig. 4). The first component had one subcomponent
that produced a strong parallel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>