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Abstract. Predictingwildfires that affect broad landscapes is important for allocating suppression resources and guiding
land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing

prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We
developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a
spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk

(interactions of fuel characteristics and environmental conditions conducive towildfire) using satellite imagery, ourmodel
of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and
aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study

landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study
demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in
the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

Additional keywords: Bromus madritensis, Bromus tectorum, desert fire risk modelling, fuel load modelling, Gold
Butte, landscape wildfire prediction, Schismus barbatus.

Received 22 September 2012, accepted 17 December 2012, published online 15 April 2013

Introduction

Desert ecosystems are characterised by low perennial vegetation

cover, low primary productivity, and limited fuel load, which
have resulted in deserts historically experiencing fire infre-
quently (Humphrey 1974; Brooks and Matchett 2006). In the

Mojave Desert, non-native annual grasses have invaded during
past centuries and have become prevalent in low- and middle-
elevation shrublands since a period of high precipitation during
1976 to 1998 (Hunter 1991; Salo 2005; Hereford et al. 2006).

In recent decades, these annual grasses, including red brome
(Bromus madritensis), cheatgrass (B. tectorum), and common
Mediterranean grass (Schismus barbatus), have changed the

spatial distribution and type of fuels across arid and semiarid
landscapes in the south-western USA by creating a continuous
fuel bed for fire to spread through naturally large gaps between

perennial grasses and shrubs (Brown andMinnich 1986; Brooks
1999). Burnt shrublands are typically recolonised by the exotic
grasses that fuelled the fires that burnt them, thus promoting

re-burning, a process known as the grass–fire cycle (D’Antonio
and Vitousek 1992). Consequently, the frequency, size and
intensity of fires in the Mojave Desert have increased con-
comitantly with increases in fine fuel density (Brooks and Esque

2002; Brooks and Minnich 2006; Esque et al. 2010), facilitated
by both human and lightning caused ignitions (Brooks and

Matchett 2006).
Given the historically infrequent wildfire occurrence in the

Mojave Desert in the south-western USA, many plants and

animals are poorly adapted to survive landscape-scale fires
(Esque et al. 2003; DeFalco et al. 2010). Adverse effects of fire
are of particular concern for land managers because fires can
have long-term effects on the structure and species composition

of plant communities (Abella 2009; Engel and Abella 2011) and
can kill or injure threatened and endangered animal species such
as the desert tortoise (Gopherus agassizii; Esque et al. 2003).

However, effects of fire on many Mojave Desert species are
largely unknown. Research on fire occurrence and fuel char-
acteristics can expand knowledge of where, when and how

desert fires may occur and provide insight for the management
of future wildland fires (Loboda 2009). Although several fuel–
fire models exist for a variety of ecosystems, fuel load models

and fire hazardmaps for arid ecosystems, and theMojaveDesert
in particular, are lacking (Brooks et al. 2004).

Important parameters for modelling potential for desert fires
to occur (fire risk) include fuel load, potential ignition sources,
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atmospheric conditions and fuel moisture. Traditionally, fuel
inputs for modelling are collected through field experiments and
observations aimed at classifying fuels by the rate of fire spread

they support, with a focus on designating fire suppression
response times (Sandberg et al. 2001). These fuel inputs are
required for the widely used Rothermel (1972) surface fire

spread model and for calculating fuel load, fire danger indices
and fire behaviour. Although there are existing efforts to model
fire dynamics (e.g. LANDFIRE, http://www.landfire.gov/

index.php, accessed 27 November 2012), they frequently suffer
from scale issues, where the modelled fuel loads and underlying
vegetation community data are derived from large-scale model-
ling efforts over a variety of ecological systems, and commonly

suffer from inaccuracy, especially in arid systems where remote
sensing of vegetation is more difficult (Tueller 1987; Okin et al.
2001). For example,MojaveMid-ElevationMixedDesert Scrub

was the least accurately mapped vegetation class in a recent
accuracy assessment of LANDFIRE EVT (Stehman 2012). Our
objective was to examine fuel characteristics and major fire

components of desert systems to create a model of fire risk for a
landscape in the north-eastern Mojave Desert. Here, we use the
commonly adopted term of fire risk to mean ‘the chance for fire

to occur, as affected by the nature and incidence of causative
agents’ (Hardy 2005). Our approach for predicting fire risk
included: (1) estimating fuel loadings during 2010 to create a
spatial model of fuel throughout the study area based on

Normalised Difference Vegetation Index (NDVI), elevation
and climate variables that can then be used to predict fuel loads
in any given year; (2) combining this spatial model of fuels with

remote sensing layers that represent factors that influence
wildland fires and their ignition potential (fuel moisture, vege-
tation type, distance to roads, lightning density) to develop a fire

risk model using data from 2005, which was a year of unprece-
dented fire activity in the Mojave Desert (Brooks and Matchett
2006) and (3) validating our model of wildland fire risk by
predicting fire occurrences at a second landscape in 2005

with assessments of model performance comparing predicted
v. burnt areas.

Methods

Study area

This study was conducted within the 140 928-ha area known as
Gold Butte in the north-eastern Mojave Desert of southern
Nevada (Fig. 1). Gold Butte is a large block of federal land

located 120 km north-east of Las Vegas and managed by the
Bureau of LandManagement (BLM). Gold Butte is bordered by
Lake Mead National Recreation Area to the south and west, the
Virgin River to the north and Grand Canyon – Parashant

National Monument to the east. Gold Butte serves well as a
landscape-scale study area for modelling desert fuels and fire
risk because the vegetation communities that comprise the area

reflect the variety found across the Mojave as well as in
neighbouring deserts. Elevation of the area ranges from 2356m
at Virgin Peak to less than 367m on the shores of Lake Mead.

Gold Butte is diverse with respect to soils, slope gradient,
elevation and aspect. Large outcrops of igneous, sedimentary
and metamorphic parent materials dominate the peaks and hill
slopes of the Virgin Mountains (Luddington 2007). Parent

materials produce surface textures ranging from fine clays and
aeolian sands through sandy loams, talus and bedrock. Domi-
nant vegetation types by area occupied include: Mojave mixed
desert scrub (69%), blackbrush shrublands (24%), and piñon–

juniper woodlands (7%). Gold Butte is located in a part of the
Mojave Desert that forms a transition zone with three other arid
or semiarid ecoregions: the Great Basin Desert, the Sonoran

Desert and the Colorado Plateau. This unique convergence
results in high floral biodiversity (Bradley 1967) and provides
habitat for several threatened species such as the desert tortoise

and Las Vegas bearpoppy (Arctomecon californica). However,
like much of the Mojave Desert, Gold Butte also hosts a variety
of exotic annual plants such as red brome, cheatgrass, Mediter-

ranean grass and Sahara mustard (Brassica tournefortii), all of
which can influence fire regimes by increasing fire spread
(Whisenant 1990; Knick and Rotenberry 1997; Brooks and
Pyke 2001). In June 2005 lightning started numerous wildfires,

collectively called the Southern Nevada Fire Complex, burning
over 300 000 ha of Mojave desert habitat, which represented
132% of the total area burnt during the previous 25-year period

(Brooks and Matchett 2006). During that fire,,35 500 ha burnt
within Gold Butte.

Fuel load sampling procedures

Fuel loads were estimated on randomly located field survey
plots (n¼ 252) within Gold Butte beginning in early spring
(April) of 2010 when plants were at peak production (Fig. 1).

Fuel loads were surveyed on 30� 30-m (0.09-ha) plots dis-
tributed among 16 different Southwest Regional Gap Analysis
Project land cover types (SWReGAP; Lowry et al. 2007) and

included areas that previously burnt. Within each plot, four
30-m transects were measured for live and dead fuel loads
using a modification of the planar intersect method (Brown

1974), which was originally developed to inventory fuel

(a)(b)
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Fig. 1. Map of the Gold Butte study landscape (a), and the Coyote Springs

Valley validation landscape (b) in southern Nevada, USA. A colour version

of this figure is available from the journal online.
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accumulation in forested systems. Survey protocols for forest
assessments (Brown 1974; Lutes et al. 2006) were integrated
with those from fuel assessments in more closely related

sagebrush steppe (Stableton and Bunting 2009) to increase
sampling efficiency and to focus on the fine fuel types of most
concern for desert vegetation. We modified Brown’s (1974)

planar transects to correspond to the 30-m pixels of the remote
sensing layers by using two of four transects centred on the
plot, and parallel to one another, with 10m between them. The

second two transects were perpendicular to the first two and
also centred on the plot with 10m between them. At two points
along each transect (5 and 25m) ocular estimates were made
within a 2� 2-m quadrat (following Lutes et al. 2006) of the

percent cover of live and dead woody vegetation, live and dead
herbaceous vegetation, live and dead woody species average
height, live and dead herbaceous species average height, depth

of duff and litter profile (i.e. the layers of vegetative fuel debris
on the surface above the mineral soil) and the proportion of
litter in profile.

Fuels can be categorised by the time required for them to be
sufficiently dry to burn, which is related to stem diameter (Pyne
et al. 1996). This study quantified 1-, 10-, 100-, 1000-, 1–100-

and 1–1000-h time-lag fuel loads in 2010 (the latter two being
combined classes representing the total fuel loads over the
interval). Each transect was divided into three 10-m long
segments and randomly assigned one of the three lowest fuel

classes (1-, 10- and 100-h time-lag fuels) for quantification. All
30m of each transect (0–30m) were used to tally 1000-h time-
lag fuels. Additionally, diameter and decay class were recorded

for 1000-h time-lag fuels for use in biomass calculations. The
number of planar intersects for each time-lag fuel class was
tallied as an index of percent cover along the line and used to

estimate biomass (kgm�2) of each size class.

Fuel load estimates

Fuel size-class data measured in 2010 were entered into the Fire
Effects Monitoring and Inventory Protocol program FIREMON

(Lutes et al. 2006) to estimate fuel loadings of each sample plot
based on fuel size-class tallies, cover of live and dead fuel types
(%), average height (m) of live and dead fuel types and duff and

litter depths (cm). All fuel-loading estimates were adjusted for
slope gradient via FIREMON software and based on Brown
(1974). Elevation and slope were attributed to each plot using a

Digital Elevation Model (DEM; 10-m resolution; Gesch 2007).

Fuel load model inputs

Parameter-elevation Regressions on Independent Slopes
Model (PRISM) monthly precipitation estimates (Daly et al.

2002) for the months of October through April were summed
to produce one layer depicting winter–spring rainfall. Winter–
spring rainfall is a strong indicator of ephemeral plant

production in the Mojave Desert (Beatley 1974; Turner and
Randall 1989). The 250-m resolution, 16-day NDVI
(MOD13Q1; 16-Day L3 Global 250-m data product; Carroll

et al. 2004), available from the Moderate Resolution Imaging
Spectroradiometer (MODIS; ORNL DAAC 2010), was
downloaded for the spring and late summer of 2005 and 2010.
We used the spring (7–23 April 2005; 9 April–9 May 2010)

and summer (28 July–13 August, 2005 and 2010) NDVI
greenness indices (respectively SpNDVI and SuNDVI) as
measures of live vegetation greenness. Estimates of the ratio of

spring and summer NDVI (NDVIrat) and the difference of
spring and summer NDVI estimates for each year were
calculated according to Wallace and Thomas (2008), using

seasonal vegetation measurements rather than annual mea-
surements to focus on the periods of plant production and
senescence in the Mojave Desert. Additional data layers

depicting topography (elevation, slope gradient and aspect)
were calculated from a DEM. Fire history (annual burn peri-
meters for documented wildfires since 1941) and roads data for
Clark County, NV (all known paved and unpaved routes) were

provided by the BLM’s Southern Nevada District (Las Vegas,
Nevada).

Fuel load model

The fuel loading estimates taken at each plot and the potential
predictive layers we developed were then used to create a fuel
load estimate for the entire study area. To do so, Akaike Infor-

mation Criterion (AIC) model selection and multi-model aver-
aging (Burnham and Anderson 1998) were used to select among
general linear models constructed to relate the fuel loading

estimates with combinations of spring NDVI, elevation and
maximum and minimum average temperatures (Table 1). We
chose to use fuel loads derived from the 1–100-h fuel size classes
that we measured in 2010 because they provide the fuel conti-

nuity necessary to carry fire among the otherwise spatially
isolated heavier fuels of native shrubs and trees. The fuel load
model was then used to create a raster of predicted fuel loads for

all of ClarkCountyNVencompassing the study area using Eqn 1
at a 250-m grid resolution.

Fuel load model: estimate fuel ¼ 26:218þ 0:0001429

�ðSpNDVIÞ � 0:003� ðElevÞ � 0:2419� ðMaxTempÞ
þ 0:014� ðMinTempÞ þ 0:00018� ðAspectÞ

ð1Þ

wherein the estimated fuel load (in kgm�2) is for 1–100-h fuels,
SpNDVI is the spring NDVI (range of �1 to þ1), Elev is the
elevation (m), MaxTemp and MinTemp are the maximum and

corresponding minimum average air temperature from spring
to summer, and Aspect is the degrees from true north.

Table 1. Consensus model set for 1]100-h fuels in the north-eastern

Mojave Desert, USA

The models accounted for 99% of all model weights and had three variables

in common. The averaged model had an R2 of 0.29. SpNDVI, spring

Normalised Difference Vegetation Index (range of �1 to 1 taken on 9

May 2010); Elev, elevation (m);MaxTemp,maximum average temperature;

MinTemp, minimum average temperature; Aspect, degrees from true north

Model Term K DAICc AICcWt CumWt

SpNDVI þ Elev þ MaxTemp 5 0.0 0.42 0.42

SpNDVI þ Elev þ MaxTemp þ Aspect 6 0.3 0.36 0.78

SpNDVI þ MinTemp þ Elev þ MaxTemp 6 1.34 0.21 0.99
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Fire risk model inputs

Ignition potentials were represented by two sources of data:

lightning strike density and distance to roads within the study
area. Lightning strike density provides ignition potential for
naturally occurring fires, whereas distance to roads represents

potential for human-caused ignition (Loboda and Csiszar 2007),
which can result from recreational use of the area for camping,
shooting and driving off-highway vehicles (Sowmya and

Somashekar 2010; Moreno et al. 2011). Lightning strike data
(2000–2010) for southern NV were obtained from the Desert
Research Institute (Reno, NV). Point data depicting lightning

were converted to a raster layer in ArcGIS (vers. 9.3, ESRI)

using the spatial-analyst density tool. Most lightning strikes in

the area occur during June and July, so a lightning density sur-
face was created that combined lightning for June and July of
2005. This time period coincided with extensive fire activity in

Gold Butte, and generally in Clark County, NV (Fig. 2). A raster
layer depicting distance to the nearest road in Gold Butte was
created using GRASS GIS (vers. 6.4; GRASS Development

Team 2010).
Fuel moisture content (Fig. 3) was estimated for each 250-m

cell using an equation (Eqn 2) adapted from grassland systems

(Chuvieco et al. 2004),whichwas chosen because themajority of
the fuels in desert ecosystems that carry surface fire are more
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similar to those of grasslands than others available in available
models.

FMCg ¼�57:103þ 284:808� NDVI� 0:089

�STþ 136:75� FDg ð2Þ

where FMCg¼ fuel moisture content of grasses, ST is the

surface temperature (8C), and FDg is a function of the day of
the year given in Eqn 3.

FDg ¼ ðsinð1:5� pi� ðDyþ Dy1=3Þ=365ÞÞ4 � 1:3 ð3Þ

where Dy is the day of the year.

The fuel moisture content estimates considered both maxi-
mum (SM) and minimum (Sm) spring surface temperatures to
represent the potential temperature extremes in the region.
Vegetation type (V) was determined using a layer of vegetation

types developed for the Clark County Nevada Desert conserva-
tion program (Heaton et al. 2011).

Fire risk model

Potential for fire occurrence in 2005 (fire risk) was modelled
using a logistic general linear model in R (v2.12 RDevelopment

Core Team 2010). Fire occurrence in 2005 was selected because
this was an active fire year for the study area (and the Mojave
Desert generally) and few documented fires occurred in the

5 10 15 20 km0(c)(b)(a)

290�5020
%kg m�2

10
Risk

Fig. 3. Spatial depictions of Gold Butte with (a) the estimated fuel load with randomly located study plots (n¼ 252) where we measured fuel load

estimates indicated by black circles, (b) summer fuelmoisture estimate, with 2005 fire perimeter indicated by the thin black outline and (c) predicted 2005

fire perimeters and roads.
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study area before 2005. Fire perimeters from all fires occurring
in the study area in 2005 (ArcGIS shapefiles) were converted to
a binary raster with a 250-m resolution (using v.to.rast in

GRASS v6.4), where burnt and unburnt areas were identified
separately per raster cell. The input layers described above
(distance to roads, summer lightning density, fuel load, fuel

moisture content and vegetation type) were then used to deter-
mine the best overall model predicting fire occurrence in Gold
Butte for 2005. A suite of 118 potential models portraying fire

risk using combinations of the input variables were developed
and compared using an information theoretic approach (Burn-
ham and Anderson 1998). Because there were ,250 000 cells
with 250-m resolution in Gold Butte, 5000 cells were randomly

selected for analysis (without replacement within each iteration)
to avoid spurious model over fitting. This bootstrapping process
was iterated 10 000 times, and competing models were ranked

using AIC. The best-fitting model was identified per iteration
and coefficients were calculated as the weighted average of their
inclusion in the 10 000 best models. The final model estimating

fire risk for 2005 was:

Fire risk in 2005 ¼ D2Roadsþ Summer Lightning

þ Summer Fuel Moisture

þ Spring Max Fuel Moisture

þ Fuel loadþ Perennial Vegetation type

þ Fuel load� Perennial Vegetation type

þ Spring Max Fuel Moisture� Fuel load

þ Summer Fuel Moisture� Fuel load

þ Spring Max Fuel Moisture

� Perennial Vegetation type

þ Summer Fuel Moisture

� Perennial Vegetation type

ð4Þ

To evaluate model performance, we calculated receiver oper-
ating characteristic (ROC) statistics (area-under-the-curve

(AUC)) to determine agreement between model predictions and
fire occurrence for 2005 (Elith et al. 2006). The ROC curve,
which determines sensitivity of the model by plotting the rate of

true positives (i.e. prediction of fire occurrence where fire
actually occurred) versus false positives (i.e. prediction of fire
occurrencewhen no fire occurred) for each cell in themodel, was

calculated by comparing the cells estimated to have high fire risk
to those cells with known fire occurrence in 2005. AUC statistics
of 0.9–1.0 represent sensitive model estimates (Elith et al. 2006).
We additionally used the model to predict fire risk at a second

landscape (21 597-ha within Coyote Springs Valley in Clark
County, NV) with similar desert scrubland habitat and evaluated
model performance at that location for model validation.

Results

Fuel load estimates

Fuel loads of the 1–100-h time-lag fuel classes ranged from
0 to 0.9 kgm�2 and averaged 0.3 among all 252 plots. A fuel
load model using multi-model averaging was produced that

performed well and was also defensible with respect to eco-
logical interactions thought to drive fuel production (see Eqn 1).
The model was most influenced by three of the models con-

sidered that comprised the confidence set, accounting for 99%of
the weight among all models considered (Table 1).

Fire risk model – 2005

One hundred and eighteen potential fire risk models were ana-
lysed for predictive ability using a bootstrap analysis with the
best model for each run selected based on AICc (AIC corrected

for smaller sample sizes). The same model was selected as the
best in each of the 10 000 bootstrap analyses predicting fire
occurrence in Gold Butte for 2005. This model included both of
our surrogates for ignition (distance to roads and lightning

density), the modelled fuel loading, estimates of maximum
spring and summer fuel moisture and the perennial vegetation
type. Several important interactions were also included (see

Eqn 4). Fuel load interacted with the associated perennial veg-
etation type and both estimates of fuel moisture, which could
indicate differential fuel loadings produced among the different

vegetation types. The fuel moisture estimates also interacted
with the perennial vegetation type, which could indicate dif-
ferential susceptibility of vegetation types to ignition under

similar fuel moistures. The model had an AUC of 0.88 indi-
cating that for 2005 the fire risk model accurately predicted fire
occurrence (Fig. 4). The performance of the model at the vali-
dation site was similar, with an AUC of 0.85 (Fig. 4).

A comparison of the fire risk prediction model for 2005
(Fig. 3c) with the fuel loading map and fuel moisture map
(Fig. 3a, b) illustrates that areas of low to moderate fuel loading

and moderate fuel moisture content were predicted to have the
highest risk of fire. Furthermore, a large proportion of the area
predicted to have a high fire risk in 2005 actually burnt

(20 040 ha of 25 403 at risk¼ 0.79, Fig. 3c). Another smaller
area in the northern region of Gold Butte that burnt in 2005 was
not predicted to have a high fire risk (10 107 ha; Fig. 3c). Despite

greatest fuel loading at higher elevations on the Virgin Moun-
tains, these areas actually had low fire risk due to much higher
and more continuous fuel moisture in that area (Fig. 3a, b). The
validation site, although smaller in area, showed similar corre-

spondence between the predicted fire risk and the area burnt in
2005 (Fig. 5). Again, there were a few areas of higher risk that
did not burn likely because they were segregated from either

ignition or spread, or could have been saved by fire suppression
crews that were actively fighting the fire as it moved northward.

Discussion

Our fuel load and fire risk modelling techniques performed well

in a desert environment where fuel load characteristics are
highly variable and difficult to predict because of the spatial
heterogeneity of the factors driving the system. The fuel load

model described,29% of the variability in fuel loads, and this
study showed that fire risk could be predicted with reasonably
high accuracy. However, a large amount of unexplained varia-

tion remained in the fuel load models. This variation may be
attributed to the low representation of areas with high fuel loads
in the models, or to the generally high variability in fuel load
characteristics in desert vegetation due to their patchy

F Int. J. Wildland Fire P. F. Van Linn et al.



distribution (Allen 2001). Some of the unexplained variation

may also be due to thewide range of fuel types that occur inGold
Butte that were incorporated into our models. Our study
focussed on the entire area within Gold Butte; however, we

expect that modelling a smaller subset of vegetation types, such
as desert shrublands and excluding areas with extreme fuel
loads (woodlands and barren rock outcrops), could reduce the
variance in the fuel model. Another way to increase fuel model

accuracy might be to match the field sampling as closely as
possible to the remote sensing units (Miller and Yool 2002) or to
examine the interspace and below-shrub microsites typifying

desert vegetation for fuel load and fire behaviour characteristics.
It is important to note that the fuel load models developed for
this study were not directly linked to fuel load models com-

monly used for forest fire research (Albini 1976; Deeming et al.
1977; Anderson 1982), although remote sensing techniques are
increasingly being used for fuel load assessment and fire risk

prediction in arid ecosystems (Chen et al. 2011).
The fuel loadings we used are accurate for dense perennial

grasslands (e.g. Konza Prairie, Kansas, Chuvieco et al. 2004),
andwe expected fuels of grasslands to better represent the desert

shrubland fuel loads that are modified by increased fuel conti-
nuity contributed by exotic grasses. However, the fuels found in
desert shrublands of the Mojave Desert are qualitatively and

quantitatively different from prairie grasslands due to the high
spatial variability of fuel loads, fuel geometry and total fuel
loads. For instance, windblown seeds of annual grasses are

captured by perennial shrubs and grow more densely beneath
their canopies where soil nutrients are concentrated (Walker
et al. 2001). In addition, prairie grass species are active (green)

throughout the summer unlike Mojave Desert exotic grass
species, which are active during spring and senesce during the
summer. Further fuels modelling focussed on common western

desert fuel types may benefit fire risk modelling endeavours.

Fuel models that focus on the lower bajada and alluvial fan
Mojavean–Sonoran desert scrub merged with the Mojave upper
desert scrub groups may improve predictions of fire risk in

south-western desert landscapes.
In addition to our fuel model, we used remote sensing data to

represent other important characteristics of fire risk (e.g. NDVI,
potential ignition sources, fuel moisture content and tempera-

tures). Consequently, we produced a model that depicts fire risk
for the entire study landscape, which has promise as a manage-
ment tool (Loboda 2009; Chen et al. 2011). This tool or

variations of it may be applied to other areas of the Mojave
Desert and has potential for other desert ecoregionswhere exotic
grasses have become prevalent (Pucheta et al. 2011) or where

frequent large desert fires have caused long-term effects on
natural lands and native species (Gill et al. 1981; Pyne 1991).
Our model clearly identified areas of high fire risk and can be

used to frame future research objectives. Our fire risk model for
2005 was successful at predicting where risk was high and fires
actually occurred as well as areas that had low risk and did not
burn, at both themodel development and the validation sites.We

also noted areas where fire did not occur but were predicted to
have a high fire risk. We think that these false positives indicate
areas that had high potential for fire but did not have an ignition

source and coincide with accumulations of fine fuels across
consecutive years at low and middle elevations in the Mojave
Desert (Brooks and Matchett 2006).

Procedures described in this study could be used to predict
fire risk in future years, and these predictions could be strength-
ened with additional field validation during peak annual plant

production between April and May of the target year (Beatley
1974). These data would only provide ,1-month advance
notice of fire risk before the onset of the fire season (typically
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in June), but identification of areas having consistently high fire
risk from year to year could be a significant benefit (Loboda

2009). It is clear that expanding the temporal predictive window
of fire risk would enhance the ability of managers to assemble
equipment and other resources in response to the predicted fire

risk. Our research provides a better alternative to current large-
scalemodelling efforts by providing locally calibrated fuel load
and fire risk modelling that can be used by land managers in

south-western arid lands. Increasing the temporal prediction
window will require accurate availability of fine-scale precipi-
tation data across landscapes (higher resolution than now

available) and a better understanding of the relationship
between the amount and timing of rainfall and temperature in
relation to fuel development. Developing an antecedent model
to predict annual plant biomass ahead of annual plant growth

would provide land managers with more forewarning of high
fire risk in areas of concern.

Our fuel loadmodels successfully demonstrated the potential
to use remote sensing data in combination with field surveys for
estimating fuel loads across a Mojave Desert landscape. This

synthesis of techniques presents a cost-saving method for
estimating fuel loads across landscapes that have not previously
had fuel and fire risk models widely available. Field estimation

of fuel loading is costly and logistically difficult (Miller and
Yool 2002), and refinement of techniques that can reduce the
amount of field sampling necessary while focussing on model-

ling components may further increase effectiveness by improv-
ing on the framework presented here.
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Hereford R, Webb RH, Longpré CI (2006) Precipitation history and

ecosystem response to multidecadal precipitation variability in the

Mojave Desert region, 1893–2001. Journal of Arid Environments 67,

13–34. doi:10.1016/J.JARIDENV.2006.09.019

Humphrey RR (1974) Fire in the deserts and desert grassland of North

America. In ‘Fire and Ecosystems’. (Eds TT Kozlowski, CE Ahlgren)

pp. 365–400. (Academic Press: New York)

Hunter R (1991)Bromus invasions on theNevada Test Site: present status of

B. rubens and B. tectorumwith notes on their relationship to disturbance

and altitude. The Great Basin Naturalist 51, 176–182.

Knick ST, Rotenberry JT (1997) Landscape characteristics of disturbed

shrubsteppe habitats in southwestern Idaho. Landscape Ecology 12,

287–297. doi:10.1023/A:1007915408590

Loboda TV (2009) Modeling fire danger in data-poor regions: a case study

from the Russian Far East. International Journal of Wildland Fire 18,

19–35. doi:10.1071/WF07094

Loboda TV, Csiszar IA (2007) Assessing the risk of ignition in the Russian

far east within a modeling framework of fire threat. Ecological Applica-

tions 17, 791–805. doi:10.1890/05-1476

Lowry J, Ramsey RD, Thomas K, SchruppD, Sajwaj T, Kirby J, Waller E,

Schrader S, Falzarano S, Langs L, Manis G, Wallace C, Schulz K,

Comer P, Pohs K, Reith W, Velasquez C, Wolk B, Kepner W, Boykin

K, O’Brien K, Bradford D, Thompson B, Prior-Magee J (2007)

Mapping moderate-scale land-cover over very large geographic areas

within a collaborative framework: a case study of the Southwest

Regional Gap Analysis Project (SWReGAP). Remote Sensing of Envi-

ronment 108, 59–73. doi:10.1016/J.RSE.2006.11.008

Luddington S (Ed.) (2007) Mineral resource assessment of selected areas in

Clark and Nye Counties, Nevada. United States Geological Survey,

Scientific Investigations Report 2006–5197. (Menlo Park, CA) Avail-

able at http://pubs.usgs.gov/sir/2006/5197/[Verified 13 February 2013]

Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi

LJ (2006) FIREMON: Fire effects monitoring and inventory system.

USDA Forest Service, Rocky Mountain Research Station, General

Technical Report RMRS-GTR-164. (Fort Collins, CO)

Miller JD, Yool SR (2002) Modeling fire in semi-desert grassland/oak

woodland: the spatial implications. Journal of Arid Environments 153,

229–245.

Moreno JM, Viedma O, Zavala G, Luna B (2011) Landscape variables

influencing forest fires in central Spain. International Journal of

Wildland Fire 20, 678–689. doi:10.1071/WF10005

ORNL DAAC (2010) MODIS Land Product Subsets, Collection 5. (Oak

Ridge National Laboratory Distributed Active Archive Center) Avail-

able at http://daac.ornl.gov/MODIS/modis.html [Verified 13 February

2013]

Okin GS, Roberts DA, Murray B, Okin WJ (2001) Practical limits on

hyperspectral vegetation discrimination in arid and semiarid environ-

ments. Remote Sensing of Environment 77, 212–225. doi:10.1016/

S0034-4257(01)00207-3

Pucheta E, Garcı́a-Muro VJ, Rolhauser AG, Quevedo-Robledo L (2011)

Invasive potential of the winter grass Schismus barbatus during the

winter season of a predominantly summer-rainfall desert in Central-

Northern Monte. Journal of Arid Environments 75, 390–393.

doi:10.1016/J.JARIDENV.2010.11.010

Estimating desert wildfire risk Int. J. Wildland Fire I

http://dx.doi.org/10.2307/2425750
http://glcf.umiacs.umd.edu/data/modis/ndvi/
http://glcf.umiacs.umd.edu/data/modis/ndvi/
http://dx.doi.org/10.1071/WF10001
http://dx.doi.org/10.1016/J.RSE.2004.01.019
http://dx.doi.org/10.1016/J.RSE.2004.01.019
http://www.prism.oregonstate.edu/pub/prism/docs/noaa02-finalreport-daly.doc
http://www.prism.oregonstate.edu/pub/prism/docs/noaa02-finalreport-daly.doc
http://dx.doi.org/10.3732/AJB.0900032
http://dx.doi.org/10.1111/J.2006.0906-7590.04596.X
http://dx.doi.org/10.1111/J.2006.0906-7590.04596.X
http://dx.doi.org/10.1111/J.1365-2664.2011.02057.X
http://dx.doi.org/10.1111/J.1365-2664.2011.02057.X
http://dx.doi.org/10.1894/0038-4909(2003)048%3C0103:EODWOD%3E2.0.CO;2
http://dx.doi.org/10.1894/0038-4909(2003)048%3C0103:EODWOD%3E2.0.CO;2
http://dx.doi.org/10.1894/0038-4909(2003)048%3C0103:EODWOD%3E2.0.CO;2
http://dx.doi.org/10.1016/J.JARIDENV.2010.04.011
http://grass.osgeo.org
http://dx.doi.org/10.1016/J.FORECO.2005.01.029
http://dx.doi.org/10.1016/J.FORECO.2005.01.029
http://www.clarkcountynv.gov/depts/dcp/Pages/DCPReports.aspx
http://www.clarkcountynv.gov/depts/dcp/Pages/DCPReports.aspx
http://dx.doi.org/10.1016/J.JARIDENV.2006.09.019
http://dx.doi.org/10.1023/A:1007915408590
http://dx.doi.org/10.1071/WF07094
http://dx.doi.org/10.1890/05-1476
http://dx.doi.org/10.1016/J.RSE.2006.11.008
http://pubs.usgs.gov/sir/2006/5197/
http://dx.doi.org/10.1071/WF10005
http://daac.ornl.gov/MODIS/modis.html
http://dx.doi.org/10.1016/S0034-4257(01)00207-3
http://dx.doi.org/10.1016/S0034-4257(01)00207-3
http://dx.doi.org/10.1016/J.JARIDENV.2010.11.010


Pyne SJ (1991) ‘Burning Bush: a Fire History of Australia.’ (Henry Holt and

Company, Inc.: New York)

Pyne SJ, Andrews PL, Lavern RD (1996) ‘Introduction to the Wildland

Fire.’ (Wiley: New York)

RDevelopmentCore Team (2010). ‘TheR project for statistical computing’.

Available at http://www.R-project.org/ [Verified 13 February 2013]

Rothermel RC (1972) A mathematical model for predicting fire spread in

wildland fuels. USDA Forest Service, Intermountain Forest and Range

Experiment Station, Research Paper INT-115. (Ogden, UT)

Salo L (2005) Red brome (Bromus rubens subsp. madritensis) in

North America: possible modes for early introductions, subsequent

spread. Biological Invasions 7, 165–180. doi:10.1007/S10530-004-

8979-4

Sandberg DV, Ottmar RD, Cushon GH (2001) Characterizing fuels in the

21st Century. International Journal of Wildland Fire 10, 381–387.

doi:10.1071/WF01036

Sowmya SV, Somashekar RK (2010) Application of remote sensing and

geographical information system in mapping forest fire risk zone at

BhadraWildlife Sanctuary, India. Journal of Environmental Biology 31,

969–974.

Stableton A, Bunting S (2009) Guide for quantifying fuels in the sagebrush

steppe and juniper woodlands of the Great Basin. Bureau of Land

Management, Technical Note 430. (Denver, CO)

Stehman S (2012) Landfire accuracy estimates for the Great Basin Super-

zone: comparison of original estimates with poststratified estimates

adjusted for the proportion of area in each EVT Map class. Avail-

able at http://www.landfire.gov/downloadfile.php?file=Stehman-LF_

Analysis_Feb8.pdf [Verified 20 September 2012]

Tueller PT (1987) Remote sensing science applications in arid environ-

ments. Remote Sensing of Environment 23, 143–154. doi:10.1016/0034-

4257(87)90034-4

Turner FB, Randall DC (1989) Net productivity by shrubs and winter

annuals in southern Nevada. Journal of Arid Environments 17, 23–36.

Walker LR, Thompson DB, Landau FH (2001) Experimental manipula-

tions of fertile islands and nurse plant effects in theMojaveDesert, USA.

Western North American Naturalist 61, 25–35.

Wallace CSA, Thomas KA (2008) An annual plant growth proxy in the

Mojave Desert using MODIS-EVI Data. Sensors 8, 7792–7808.

doi:10.3390/S8127792

Whisenant SG (1990) Changing fire frequencies on Idaho’s Snake River

plains: ecological and management implications. In ‘Cheatgrass Inva-

sion, Shrub Die-Off, and Other Aspects of Shrub Biology and Manage-

ment: Conference Proceedings’, 5–7 April 1989, Las Vegas, NV. (Eds

ED McArthur, EM Romney, SD Smith, PT Tueller) USDA Forest

Service, Intermountain Research Station, General Technical Report

INT-276, pp. 4–10. (Ogden, UT)

www.publish.csiro.au/journals/ijwf

J Int. J. Wildland Fire P. F. Van Linn et al.

http://www.R-project.org/
http://dx.doi.org/10.1007/S10530-004-8979-4
http://dx.doi.org/10.1007/S10530-004-8979-4
http://dx.doi.org/10.1071/WF01036
http://www.landfire.gov/downloadfile.php?file=Stehman-LF_Analysis_Feb8.pdf
http://www.landfire.gov/downloadfile.php?file=Stehman-LF_Analysis_Feb8.pdf
http://dx.doi.org/10.1016/0034-4257(87)90034-4
http://dx.doi.org/10.1016/0034-4257(87)90034-4
http://dx.doi.org/10.3390/S8127792

