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Abstract

A central challenge of conservation biology is using limited data to predict rare species occurrence and identify
conservation areas that play a disproportionate role in regional persistence. Where species occupy discrete patches
in a landscape, such predictions require data about environmental quality of individual patches and the connectivity
among high quality patches. We present a novel extension to species occupancy modeling that blends traditional
predictions of individual patch environmental quality with network analysis to estimate connectivity characteristics
using limited survey data. We demonstrate this approach using environmental and geospatial attributes to predict
observed occupancy patterns of the Yosemite toad (Anaxyrus (= Bufo) canorus) across >2,500 meadows in
Yosemite National Park (USA). A. canorus, a Federal Proposed Species, breeds in shallow water associated with
meadows. Our generalized linear model (GLM) accurately predicted ~84% of true presence-absence data on a
subset of data withheld for testing. The predicted environmental quality of each meadow was iteratively ‘boosted’ by
the quality of neighbors within dispersal distance. We used this park-wide meadow connectivity network to estimate
the relative influence of an individual Meadow’s ‘environmental quality’ versus its ‘network quality’ to predict: a)
clusters of high quality breeding meadows potentially linked by dispersal, b) breeding meadows with high
environmental quality that are isolated from other such meadows, c) breeding meadows with lower environmental
quality where long-term persistence may critically depend on the network neighborhood, and d) breeding meadows
with the biggest impact on park-wide breeding patterns. Combined with targeted data on dispersal, genetics, disease,
and other potential stressors, these results can guide designation of core conservation areas for A. canorus in
Yosemite National Park.
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Introduction

An important goal of conservation biology is to identify
specific areas within a species’ range that play a
disproportionately important role in the regional or global

persistence of the species [1]. Important obstacles to
identifying such “hotspots” include most generally that species
often are patchily distributed, that these patches are dynamic in
nature, and that we often have limited data on occurrence and
spatio-temporal dynamics of the species.
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There are many existing dynamic and static approaches to
predict population hotspots for species with patchy
distributions. Dynamic meta-population or patch occupancy
models typically require detailed data on patch-specific
colonization and extinction probabilities and dispersal functions
(e.g., state transition models [2,3], and spatially realistic
simulation models [4–6]), or complete occupancy data for many
patches across large landscapes (e.g., incidence function
models [7,8]). Unfortunately for most species, especially rare
ones, these data are either sparse or unavailable. Alternative
static statistical approaches model the probability of patch
occupancy as a function of biotic and abiotic variables. These
models can be parameterized with species presence/absence
data collected over relatively short time periods [9], and they
can incorporate uncertainly in occupancy due to imperfect
detection [10,11]. The role of dispersal among patches can be
incorporated by, for example, including the density of occupied
patches within a defined radius or the distance to the nearest
occupied patch [9]. This approach typically requires that all
potential habitats in the study area be surveyed for the
presence/absence of the target species and environmental
characteristics (e.g., [9,12–14]). When developing occupancy
models for large areas this requirement presents a formidable
challenge. In sum, many approaches either require data with
more resolution in time or space than is typically available for
rare species over large areas, or they require enough data to
accurately estimate patch-dynamic model parameters to avoid
large error propagation [15].

Here we use a novel approach to static species occupancy
modeling that allows us to include the potential dispersal
network structure as a predictor despite having neither
complete species presence/absence data for the entire study
area, nor detailed time series data to estimate colonization/
extinction rates. Our approach combines a static species
distribution model with network analysis to infer patch
connectivity and thereby estimates which patches are likely to
have a disproportionate influence on the regional population.
This network extension of a simple species occupancy model
enables general inferences about the relative role of spatial
‘network quality’ (i.e., meadow neighborhood conditions
conducive to colonization) versus intrinsic ‘environmental
quality’ (i.e., coarse environmental attributes intrinsic to a
meadow that are conducive to breeding) of habitat patches that
are linked by dispersal.

We illustrate this approach with a case study of the Yosemite
toad (Anaxyrus [= Bufo] canorus, hereafter A. canorus). A.
canorus is endemic to the Sierra Nevada mountains of
California, and breeds in aquatic habitats associated with high
elevation meadows. In our modeling, we used extensive (but
not complete) toad presence/absence data collected across all
of Yosemite National Park, USA (hereafter ‘Yosemite’) from
1992–2010. Predicting toad occupancy patterns and hotspots
at the scale of Yosemite is a daunting task because the park is
more than 3000 km2 in size with thousands of habitat patches
that are potentially occupied by toads. A. canorus site
occupancy data from the last two decades suggests that this
species has experienced broad declines across its range
during the past century, and this once common species is now

Proposed for protection under the Endangered Species Act as
Threatened and is a California Species of Special Concern
[16–19].

A. canorus typifies the situation for many rare species that
occupy patchy habitat: detailed temporal data on colonization-
extinction rates are not available to develop a dynamic patch-
occupancy model, and sampling gaps in the landscape
preclude using characteristics of neighboring patches as
predictors of species presence (to infer the role of dispersal
[9,20]:). In our modeling approach, we considered the
distribution of A. canorus breeding habitat to be a network of
discrete meadow patches linked by dispersal. To describe the
habitat characteristics of each of Yosemite’s >2,500 meadows,
we developed coarse-scale environmental and landscape (i.e.,
habitat) variables that we could characterize using remotely
sensed data. Our primary focus was to accurately predict the
distribution of A. canorus breeding meadows to: a) estimate the
total number of breeding meadows within Yosemite, b) identify
breeding ‘hotspots,’ or clusters of high quality breeding
meadows in the park, c) rank individual breeding meadows by
their potential contribution to breeding at the park scale, and d)
improve the efficiency of future field survey efforts for model
refinement. The resulting model provides an adaptive
management framework that can be applied broadly to other
patchily distributed species.

Study System
A. canorus occurs between the southern portion of the Lake

Tahoe Basin in the north to headwaters of the Kings River in
the south between 1,980 m (6,500 ft) and 3,414 m (11,200 ft).
The historic range of the species includes six National Forests
and two National Parks, with approximately one-third of the
historic range in Yosemite [21].

A. canorus breeding starts in late spring just after snowmelt
when adults congregate at seasonal pools, shallow water, the
margins of lakes and ponds, and slow moving streams most
often associated with meadows. The larvae develop within
weeks in ephemeral aquatic habitat and metamorphic toads
emerge onto surrounding meadow habitat for cover and
foraging. Survey data suggest some sites demonstrate
considerable variation in year to year breeding while others are
relatively consistent [22]. Natural history of the species
associated with the post-metamorphic life stages (i.e., juveniles
and adults) is less well understood but in addition to meadows
they use surrounding upland habitats [23]. The seasonal
movements of juveniles and adults may be limited to ca. 1.25
km from breeding sites [24]. Telemetry data on A. canorus
movement patterns suggest that individuals show relatively
high site fidelity at the meadow scale, but not necessarily the
individual breeding pond scale [24].

Site occupancy data suggest that A. canorus has
disappeared from 47–69% of the sites where it occurred
historically, and remaining populations appear to be more
isolated and consist of a small number of breeding adults
[22,25–27]. While it is not certain what suite of factors are
leading to the decline, potential causes may include airborne
pesticides or other environmental toxins, infectious disease,
climate change, or other habitat modifications associated with
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anthropogenic uses [17,27,28]. While non-native fish have
been shown to play an important role in the decline of another
amphibian species, Rana muscosa, in Yosemite [9,29–33] they
are likely not an important driver of A. canorus decline [30,34].

Methods

Amphibian field surveys and data sources
We focus on meadows as the scale for analysis and

prediction of A. canorus breeding habitat. A meadow layer was
created in ArcGIS based on the current vegetation map for
Yosemite [35]. This Yosemite vegetation map was produced
from over 1600 color infrared aerial photographs taken in 1997,
and has a minimum mapping unit of 0.5 ha. Meadow
vegetation polygons were identified from the map by selecting
four vegetation classes characteristic of meadows in Yosemite:
1) “Semi-Permanently to Permanently Flooded Meadow”; 2)
“Intermittently to Seasonally Flooded Meadow”; 3) “Shorthair
Sedge Herbaceous Alliance”; 4) “Willow spp./Meadow
Shrubland Mapping Unit.” Immediately adjacent meadow
vegetation polygons or those separated by a mapped stream
were joined to form a single ‘Contiguous Meadow Polygon,’
and used as the focal meadow unit. For each Contiguous
Meadow (hereafter, ‘meadow’), the proportion of that polygon
comprised of each of the four meadow vegetation types was
calculated. Sites that were either 100% “Willow spp./Meadow
Shrubland Mapping Unit” or 100% “Shorthair Sedge
Herbaceous Alliance” were excluded. In the case of the former,
these polygons did not meet our meadow definition: “An
ecosystem type dominated by herbaceous species that use
surface water and/or shallow ground water, and where woody
species may be present and locally dense but not dominant at
the meadow scale”. Additionally, preliminary analyses of
existing survey data suggested this meadow type is not used
by A canorus for breeding. In the case of meadow polygons
comprised of 100% Shorthair Sedge Herbaceous Alliance
further inspection of air photos and field visits suggested these
were very dry meadows with low likelihood of containing
ponded breeding habitat. We excluded non-suitable habitat
types prior to surveys instead of including variables describing
these habitat types in our model in an effort to reduce the
number of potential explanatory variables in our model (see
models below) and to reduce the number of sites needing to be
surveyed. The final GIS layer in our analysis was comprised of
2,558 meadows.

We synthesized all available A. canorus survey data from
1992–2010 to identify meadows where A. canorus breeding
was detected, and meadows surveyed but where no A.
canorus breeding was detected. Our three main survey data
sets included “Fellers” (1992-2009) (G.M. Fellers unpublished
data), “Knapp” (2000-2001) [30], and “NPS/USGS” data
collected during this study (2009-2010). All of these
independent efforts used almost identical amphibian visual
encounter survey methods [30,36,37], but differed in the years
sampled and landscape-level sampling strategy. The Fellers’
surveys targeted mapped lakes, ponds, streams, and
meadows; and Knapp censused all mapped lakes, ponds,
streams, meadows and marshes in the park. Both efforts also

surveyed unmapped lakes, ponds, and wet meadow habitat
encountered during site visits, but neither had access to the
detailed 2007 meadow layer described above. The NPS/USGS
focused exclusively on meadows/marshes from this GIS layer
because many were previously unmapped and thus not
explicitly targeted in prior surveys. Of the 2,558 meadows
derived from the vegetation map, Fellers and Knapp crews
surveyed 898 meadows between 1992 and 2009, and the NPS/
USGS crews surveyed 436 additional meadows (never before
surveyed by Fellers or Knapp) in 2009 and 2010. During all
surveys the number of A. canorus of all life stages (adults,
juveniles, tadpoles, egg masses) was recorded. Data from the
Fellers and Knapp surveys support the focus on meadows as
important breeding habitat for A. canorus. Of all the water
bodies they surveyed, over 95% of those where A. canorus
breeding was detected were in, or within 100 m of, a meadow
derived from the park vegetation map. Only four breeding
observations were >100 m from a mapped meadow and thus
were not included in our analysis due to lack of any
environmental data associated with those locations.

To evaluate park-wide patterns of A. canorus breeding and
to account for inherent geospatial recording differences among
datasets, we assigned any survey effort that took place within
100 m of a meadow to that meadow. Thus, for each meadow
for years 1992-2010 we recorded whether A. canorus was
detected or not, as well as whether there was a breeding
population of toads. We counted as “breeding” only those
meadows with some toad life stage other than adult (i.e., a life
stage indicative of recent breeding: egg masses, tadpoles, or
young-of-year), and only six meadows registered adults without
breeding. All data were collapsed across years, and a meadow
with recorded breeding in any one year was classified as a
“breeding meadow.” In all, our dataset on meadows that have
been surveyed for A. canorus spans 18 yrs from 1992–2010,
and of the 2558 meadows in the park 1344 have been
surveyed. Breeding was documented in 179 of the surveyed
meadows. All survey data reported here were purely
observational and were conducted within Yosemite and
permitted by the National Park Service (Study #’s:
YOSE-00383, YOSE-00011, YOSE-00016).

Environmental data
To describe and predict the presence or absence of A.

canorus within meadows, we amassed available remotely
sensed and/or geospatial data on multiple biotic and abiotic
variables thought to be important to A. canorus breeding
ecology. All environmental and spatial predictors of A. canorus
breeding were compiled at the meadow scale. These included:
a) coarse meadow vegetation classes, b) meadow landscape
attributes, c) satellite derived snow covered days and melt
dates for each meadow, d) modeled mean monthly estimates
of meadow temperature and precipitation, and e) satellite
derived estimates of summer wetness and aboveground green
biomass (Table 1).

Vegetation.  The vegetation types within each meadow
(percent meadow area occupied by each of four vegetation
classes) were derived from the Yosemite vegetation map
described above. This was condensed to a Shannon Diversity
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Table 1. Explanatory variables used in the General Linear
Models and General Additive Models chosen from the full
set because they were not highly correlated (r < 0.9).

Variable Description
ElevationCentroid Elevation of the meadow centroid

MaximumSlope
Maximum terrain slope along the shortest path to the
nearest meadow

VegClassDiversity

Shannon Diversity index of mapped vegetation classes
within each meadow polygon. This measure combines the
number of vegetation polygons of each type and their aerial
extent.

AvgAnnualWetness

Inter-annual average (1986-2006) Tasseled Cap Wetness,
averaged within each year over all 30m LANDSAT pixels
within the meadow.

SDAvgAnnWetmess

Inter-annual standard deviation (1986-2006) of the Tasseled
Cap Wetness, averaged within each year over all 30m
LANDSAT pixels within the meadow.

AvgSDAnnWetmess

Inter-annual average (1986-2006) of the spatial standard
deviation in Tasseled Cap Wetness across LANDSAT pixels
within the meadow.

AvgAnnNDVI

Inter-annual average (1986-2006) Normalized Difference
Vegetation Index, averaged within each year over all 30m
LANDSAT pixels within the meadow.

SDAnnAvgNDVI

Inter-annual standard deviation (1986-2006) of the
Normalized Difference Vegetation Index, averaged within
each year over all 30m LANDSAT pixels within the meadow.

AvgSDAnnNDVI

Inter-annual average (1986-2006) of the spatial standard
deviation in Normalized Difference Vegetation Index across
LANDSAT pixels within the meadow.

SnowP50.Mean

Inter-annual average (2002-2007) proportion of days in the
water year that the meadow had >50% snow covered area
(estimated from daily MODIS).

SnowP50.SD

Inter-annual variability (2002-2007) in snow-covered days,
measured as the standard deviation among water years in
the proportion of days with >50% snow covered area
(estimated from daily MODIS).

MeltDate.Mean

Inter-annual average (2002-2007) of the first date after April
1st that the meadow had <25% snow covered area
(estimated from daily MODIS)

MeltDate.SD

Inter-annual standard deviation (2002-2007) of the first data
after April 1st that the meadow had <25% snow covered
area (estimated from daily MODIS)

MeanPrecip
Inter-annual average (1980-1997) of the mean monthly
precipitation for the meadow estimated from Daymet.

SDAvgTemp

Inter-annual standard deviation (1980-1997) of the mean
monthly precipitation for the meadow estimated from
Daymet.

The different models varied in details of variable selection, coefficients, and
functional forms, but the rank-estimates of breeding probabilities predicted by all
models were highly correlated (Spearman’s correlation > 0.95 for all comparisons).
Our focus in this study is on prediction of A. canorus breeding occupancy (and the
management consequences of those predictions), rather than interpretation of
model coefficients. See the Methods for more details on how these variables were
derived.

summary statistic (i.e., diversity of vegetation classes) by
combining the number of meadow vegetation polygons of each
type and their area:

H=∑i=1
V − Vi*ln Vi

where Vi is the fraction of the area of the entire meadow
made up of vegetation class i.

Meadow Landscape Attributes.  Meadow elevation was
estimated at the centroid using a 10m Digital Elevation Model
(DEM), and the Maximum Slope to reach the nearest meadow
was estimated along the least cost path from the focal meadow
to the closest edge of the nearest meadow. The distribution of
meadows among park watersheds was described by assigning
each meadow centroid to a watershed defined by the CalWater
2.2.1 watershed planning units (http://frap.cdf.ca.gov/data/
frapgisdata/download.asp?rec=calw221).

Snow Covered Area.  We used available estimates of daily
fractional Snow Covered Area (SCA) that were derived from
500 m NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite imagery [38,39]. These data included
complete water years (1 October through 30 September of the
following year) for 2002-2007 spanning a range of dry and wet
years. We calculated the proportion of each water year during
which the meadow had greater than 25% and 50% SCA, and
the ‘spring melt out date’ as the first day after 1 March on which
meadow SCA was less than 25%. These SCA metrics were
highly correlated among years, so we used in our analysis the
mean and standard deviation (from 2002–2007) of the
proportion of snow days (> 25% and >50% SCA) and the mean
and standard deviation of the spring melt out date.

Precipitation and Temperature.  We used Daymet 1 km
climate data (http://daymet.ornl.gov) to estimate for each
meadow polygon the monthly mean, maximum, and minimum
temperature and precipitation from 1980–1997. To characterize
average climatic conditions for each meadow we summarized
the data as the 18 year average and standard deviation of
monthly temperature and precipitation. Summary statistics for
monthly maximum and minimum temperature and precipitation
were excluded because they were highly correlated with the
means. Mean temperature was dropped from the analysis
because it was highly correlated with meadow elevation (r =
-0.98), which was retained.

Wetness and Greenness.  We used publicly available 30 m
Landsat Thematic Mapper multi-spectral images (LANDSAT) to
estimate the inter-annual summer wetness and standing green
biomass for each meadow using the Tasseled Cap Wetness
and Normalized Difference Vegetation Index (NDVI),
respectively [40–42]. Necessary geometric and radiometric
corrections were conducted before applying the Tasseled Cap
and NDVI transformations. One Landsat scene from mid-July,
mid-August, and mid-September for each year between 1986
and 2006 was selected based on image quality and cloud
cover. From these data we used zonal statistics to calculate the
mean and standard deviation of Wetness and NDVI across all
3 months of the growing season, and then calculated the mean
and standard deviation of summer Wetness and NDVI, as well
as the average within-meadow standard deviation (i.e., spatial

A Network Extension of Species Occupancy Models

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e72200

http://daymet.ornl.gov


variability in Wetness and NDVI), across all 20 years. These
metrics are meant to help distinguish relative differences
among meadows in context of meadow specific hydrologic
regimes: a) meadows that are consistently wetter or drier on
average among years, b) meadows where wetness and
productivity are highly sensitive to inter-annual variation in
climate versus meadows that are not, and c) meadows
heterogeneously wet versus homogeneously wet.

Predictive Models
While we reduced the number of explanatory variables by

removing ones that were highly correlated (r > 0.9),
multicollinearity among the remaining predictors can create
problems with interpreting model coefficients. Thus we
explicitly focus on prediction and avoid interpreting the
ecological significance of individual model coefficients. We
evaluated six models against A. canorus data explicitly
withheld for testing. All six models generated very similar
predictions (see below) despite variation in the details of
variable selection and in the shapes of the predictive functions.
These patterns also suggest there was no basis for interpreting
model coefficients and support our focus on prediction and the
management applications of those predictions. Our intended
scale of inference is Yosemite National Park. All analyses were
conducted using R version 2.12.0 [43].

The models included: 1) “GLMfull”: a general linear model
with a logit link function assuming binomial errors (Library
“stats”, function “glm”) using all covariates listed above that
were not highly correlated; 2) “GLMstep”: a GLM with Akaike
Information Criteria (AIC) model selection to choose the most
parsimonious combination of explanatory variables using both
forward and reverse model selection (Library “MASS”,
“stepAIC” function); 3) “GAM”: a non-smoothed General
Additive Model that accommodates non-linear relationships
(Library “gam”, function “gam”); 4) “GAMs”: a GAM where the
non-linear functions are allowed to be smoothed (Library
“gam”, function “gam”); 5) “GAMstep”: a GAM where each
predictor can be included smoothed or un-smoothed using
forward and reverse stepwise AIC model selection (Library
“gam”, function “step. gam”); and finally 6) “100subGLM”: this
GLM was built in response to the highly skewed prevalence
ratio of absence: presence data of nearly 7:1. While prevalence
ratios in this domain do not necessarily lead to poor model
performance [44] we investigated whether balancing
prevalence ratios would create better predictive performance in
our particular dataset. We ran the GLMstep 100 times on
subsamples of the dataset that included equal numbers of
presence and absence meadows. In all cases we retained all
breeding meadows in the training dataset, and for each of the
100 models we randomly selected the same number of
absence records from the training data. On average, this meant
each absence record was included in 16 different models. For
each of the 100 subsample datasets we created a standard
GLMstep model and calculated the average model prediction
across all 100 models. AIC, which we used to select models in
several of the procedures detailed above, is a criterion used to
measure the relative goodness of fit of a statistical model, and
weighs the trade off between accuracy (measured as the

maximum likelihood of the model fit to the data) and complexity
(measured as the number of parameters) of any given model
[45].

The rank-estimates of breeding probabilities predicted by all
models were highly correlated (Spearman’s correlation > 0.95
for all comparisons), and all models had ~80% or more true
presences and true absences when tested against observed
breeding patterns (see ‘Training and testing the models’). For
the rest of the analysis we focus only on the 100subGLM
(hereafter “Environmental Model”) — with the primary reason
being that it was the most effective model in terms of identifying
true presences and true absences (Table 2) in a test dataset.
This subsample approach provided a distinct delineation of
presence probabilities spanning the full range from 0 to 1
(Figure 1). We use this “Environmental Model” in all
subsequent network extensions of our distribution modeling.

Training and testing the models
To test the predictive ability of our models, we trained and

tested our models with two different sets of data. The test
dataset was comprised of 177 randomly chosen meadows
without breeding, and 25 randomly chosen breeding meadows.
The numbers of presence and absence meadows in the test
dataset were chosen for two purposes. First, given the very
small sample of meadows with breeding, we did not wish to
remove too many breeding meadows from our training data.
Second, we wanted to match the ratio of all presence to
absence data in our entire dataset (179 presence, 1165
absence, ~13%). After removing these randomly chosen
meadows for testing purposes, we were left to train our model
with 154 presence meadows and 988 absence meadows.

The predictive performance of each model was assessed
using several criteria, including visual inspection of receiver
operator characteristic (ROC) plots and area under the curve
(AUC) statistics [46], and a maximum discrimination threshold
(MDT). To determine MDT we iteratively set a probability
threshold from 0 to 1 in increments of 0.01. For each threshold
any meadow with a probability of breeding greater than the
threshold was predicted to contain a breeding population, and
below that probability the meadow was not considered a
breeding meadow. For both the training and the test datasets
we calculated the fraction of the observed presence data
correctly predicted and subtracted from that the fraction of the
observed absence data correctly predicted, and determined the
MDT as that which minimized the difference.

Network analyses
Using the Environmental Model described above, we

obtained a predicted probability of A. canorus breeding at all
meadows in Yosemite. We call this probability for any given ith
meadow Pii (in other words, the influence of meadow i on
itself). Pii can be thought of as a meadow’s probability of A.
canorus breeding independent of any network properties that
meadow might have.

We know dispersal is an important ecological phenomenon
generally, and specifically in our system [19,21,23]. Statistical
approaches that allow dispersal information to be included in
regression models either use autocovariates constrained by a
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dispersal kernel [9] or conditional autoregressive spatial
models [47]. An autocovariate in this sense describes the
presence of breeding at a given meadow as a function of
breeding at neighboring meadows – and would be a
reasonable approach if all meadows in Yosemite NP had been
surveyed for A. canorus breeding. However, this approach is
problematic because in our data set many meadows are
surrounded by unsurveyed meadows with no information about
breeding status. The purpose adding a spatial network analysis
was to examine the role that the potential dispersal network
plays for individual meadow influence on park-wide breeding,
given the best fit regression models chosen above. The
network analysis attempts to use, rather than improve, the

Table 2. AUC scores, Maximum Discrimination Threshold
(MDT) probabilities (the model probability threshold that
maximizes both true presences and true absences), and
the true presence and true absence rate for the three
General Linear Models, three General Additive Models, and
the Network-Boosted GLM.

Purpose Model Metric All DataTrain Test
Predictive GLM Full AUC . 0.88 0.86
  MDT . 0.16 0.13
  %True Presence . 81 80
  %True Absence . 80 82

Predictive GLM Step AUC . 0.87 0.86
  MDT . 0.16 0.12
  %True Presence . 79 80
  %True Absence . 80 79

Predictive 100 Sub GLM AUC . 0.88 0.86
  MDT . 0.56 0.53
  %True Presence . 80 84
  %True Absence . 80 84

Predictive GAM AUC . 0.88 0.86
  MDT . 0.16 0.12
  %True Presence . 81 80
  %True Absence . 80 82

Predictive GAM Smooth AUC . 0.91 0.87
  MDT . 0.18 0.11
  %True Presence . 84 80
  %True Absence . 84 79

Predictive GAM Step AUC . 0.90 0.84
  MDT . 0.16 0.11
  %True Presence . 81 80
  %True Absence . 81 80

Potential
Influence of
Dispersal

Network-Boosted
GLM

AUC 0.864 . .

  MDT 0.88 . .
  %True Presence 78 . .
  %True Absence 78 . .

The latter includes contributions from nearby meadows (and their neighbors,
neighbors of neighbors, etc) to explore the potential influence of dispersal. All the
others models only include variables intrinsic to the meadow and were used to
predict observed breeding based on meadow covariates (See Methods for more
model descriptions).

predictive accuracy of those models. Therefore, we
incorporated the network component of Yosemite meadows by
simulating dispersal dynamics across the meadow network in
an ecologically informed manner [48]. This approach goes
beyond the statistical autocovariate approaches described
above by incorporating information about not just neighboring
meadows, but their neighbors, neighbors of their neighbors,
and so on. We do this according to the equation:

Pitotal =1− 1−Pi *Pi j

where

Pi j=∏ j 1−Pi*P j*D ji

By this equation, meadow i’s overall probability of having
toad breeding is a function of Pi and the influence of all of its j
neighbor’s Pj values, weighted by the probability of dispersal
from all meadows j to i (Dji). We implement Dji as a linear
dispersal kernel with a maximum cutoff of 1 km – where
probability of dispersal at a distance of 1 km is 0. The
maximum known A. canorus dispersal distance recorded in the
field is 1,261 m for a female and 865 m for a male [24,49–52].
We used a linear dispersal kernel because, in the absence of
dispersal data to constrain our assumption, we had little reason
to use a more complex function (e.g., negative exponential).
Thus, Pij (when i is not equal to j) is the probability of dispersal
from meadow j times the intrinsic environmental probability of
toad breeding at meadow j, times meadow i’s own intrinsic
probability. We took the product of all meadow j to meadow i
combinations, after subtracting the weighted probabilities from
1 (the probability of breeding not occurring at the meadow),
and allowed meadows with higher intrinsic probabilities to
benefit proportionately from immigration in our calculation of 1-
Pi. Subtracting everything again from 1 returns the values to
the probability of breeding, influenced by immigration from
neighboring sites. We then simulated these dynamics across
the network until the probability of breeding across sites
ceased to change (10 iterations) to obtain updated network-
influenced probabilities of breeding for each meadow within
Yosemite. Using the product of probabilities serves to
normalize the iterative contribution of nearest neighbors in the
network simulation to a value between 0 and 1. We call this
model the ‘Network-Boosted GLM’ – and it incorporates the
influence not only of nearest neighbors, but also neighbors of
neighbors, etc. A key reason for our approach was to calculate
the relative improvement each meadow experienced due to
dispersal effects as “Normalized Network Improvement” or NNI.
NNI is defined as:

NNIi=
Pitotal −Pi

1−Pi

This equation calculates how much a meadow’s probability
of breeding increased relative to the amount it could increase
(1 -Pi). For example, if the intrinsic Pi is 0.60, and the Network-
Boosted probability (Pitotal) is 0.80, then the NNI is 0.50. The
maximum possible value of NNI is one.

A Network Extension of Species Occupancy Models

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e72200



Using this approach we assessed the influence of every
meadow on the total breeding structure of Yosemite. The
summed probability of breeding across the entire Yosemite
study site is:

ExpBreedT =∑Pi total

The influence of each meadow was calculated by iteratively
disconnecting each node by changing its distance to all other
meadows to above the cutoff threshold in the dispersal kernel.
Thus, meadow i still has the same Pi, but does not contribute to
any other meadow’s probability. We then calculated

ExpBreedi= ∑
N−i

P +Pi

where meadows i’s probability is only equal to Pi. In this way
we ranked every node by its system-wide network influence
(Gi), which is calculated as

Gi=ExpBreedT −ExpBreedi

The bigger a meadow’s Gi value, the more influential it is in
our dispersal simulations. This provided us with an estimate of
the global network influence of every meadow on the overall
number of breeding meadows in Yosemite.

Results and Discussion

GLM Results
Overall, the Environmental Model (i.e., no network

consideration) predicted 84% of A. canorus true presence and
absence meadows across the landscape in our test dataset
(Figure 1a, Table 2). This ability to discern breeding and non-
breeding habitat is confirmed with AUC scores near 0.9 (Figure
1b), a common criteria for model support [46]. Finally, the
consistency in rank estimates of breeding probabilities across
all model approaches (Spearman’s correlation > 0.95 for all
comparisons) lends support to using these model predictions to
prioritize unsurveyed meadows for future assessment and in
the development of the network model.

Our Environmental Model (Figure 1) predicts that most
unsurveyed meadows have a low probability of A. canorus
breeding. The MDT for the testing dataset – which maximizes
both true presences and true absences of A. canorus on a set
of data the model has not seen before- is 0.53. This threshold
we predicts that 84% of all unsurveyed meadows above a
probability of 0.53 will have breeding, while 16% of meadows
below the threshold should also contain breeding populations.
There are 277 unsurveyed meadows with probabilities higher
than the threshold (277 * 0.84 = 233 breeding meadows) and
937 unsurveyed meadows below the threshold (937 * 0.16 =
150), resulting in a predicted total number of potential breeding
meadows within YNP to be 562 (179 known + 383 unsurveyed)
of 2,558 total meadows. This estimate is conservative given

Figure 1.  Performance of the “Environmental Model.”.  a) The distribution of probabilities for the three classes of data for the
Environmental Model (see Methods: “100subsampleGLM”). Data are combined from all surveys from 1996–2010. b) ROC plot for
the training and test data. The red line shows the fit of the model to the training data, while the blue shows the fit relative to the test
data. The curves represent those drawn from the average probabilities across 100 models.
doi: 10.1371/journal.pone.0072200.g001
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that detectability of A. canorus, even if it is present, is not
perfect (see below).

Meadow ‘Environmental Quality’ vs. ‘Network Quality’
The GLM model results reported above include only

information pertaining to a discrete meadow, and ignore the
fact that these meadows are spatially clustered in ways that
might make it more or less difficult for a given meadow to be
colonized by breeding individuals - including colonization that
could “rescue” populations in patches from local extirpation.
Overall, the rank order of meadow breeding probabilities is
similar between our ‘Network-Boosted GLM’ (where the
intrinsic probabilities are ‘boosted’ by the quality of neighboring
meadows, as well as that of their neighbors – see Methods)
and the Environmental Model (Spearman’s rank correlation =
0.96). However, comparing the two approaches allows us to
distinguish the estimated ‘environmental quality’ of a meadow
(i.e., coarse environmental attributes conducive to breeding)
from its estimated ‘network quality’ (i.e., meadow neighborhood
conditions conducive to colonization) (Figure 2a). We defined
‘high’ environmental quality to be greater than the Maximum
Discrimination Threshold of the GLM (0.53), and ‘high’ network
quality to be greater than 50% Normalized Network
Improvement. In Yosemite, 76% of A. canorus detections (red
open or closed symbols) occurred in meadows that were
predicted to have both high environmental quality and high
potential connectivity to neighboring populations (Figure 2a,
quadrant 2). These meadows could be high priority for
management because these clusters of high environmental
quality breeding meadows are potentially well connected to
each other. Approximately 10% of A. canorus breeding
detections were in meadows with high environmental quality
that are isolated from other high quality meadows (Figure 2a,
quadrant 3). These meadows could merit further investigation
for their potential contribution to genetic diversity or as refugia
from disease. These isolated breeding meadows may also be
high priority for protection if there is lower potential for natural
re-colonization after a local extirpation. Another 10% of
meadows had lower predicted environmental quality, but were
spatially well suited to be colonized by toads inhabiting nearby
higher environmental quality meadows (Figure 2a, quadrant 1).
These meadows might be expected to show intermittent
breeding or frequent local extinction and re-colonization from
toads inhabiting nearby meadows. Only 4% of A. canorus
detections were in meadows with low environmental quality
and low network quality (i.e., they are isolated from other high
environmental quality meadows) (Figure 2a, quadrant 4).
These meadows may merit further investigation to provide a
better understanding of the finer-scale habitat attributes within
these meadows that are allowing breeding. Including variables
that describe these more detailed, within-meadow attributes
could improve the accuracy of future modeling efforts.

Park-Wide Meadow Network Influence
Incorporating information about the meadow dispersal

network also offers insights into which meadows contribute the
most to A. canorus breeding at the scale of the entire park.
Individual meadows with the biggest deletion influence (see Gi

in Methods) on park-wide breeding are generally not those with
the highest intrinsic breeding probability (Figure 2b). For
example, the latter tend to be surrounded by other high
probability meadows, resulting in most of those falling in
quadrant 2 of Figure 2 (if they were isolated or surrounded by
low probability neighbors, they would fall in quadrant 3).
Instead, breeding meadows with intermediate intrinsic
environmental quality but high connectivity appear to have the
biggest park-wide impact (Figure 2a and 2b, solid red
symbols). Maximum meadow deletion impact is better
predicted by the network-boosted model probability (Figure 2c)
than by the intrinsic environmental (GLM) breeding probability
(Figure 2b). However, not all breeding meadows with high
network boosted probability have high deletion impact (Figure
2c). For example if a meadow is surrounded by many
meadows with high intrinsic breeding probability, deletion of
that meadow will likely not have a large impact on the breeding
probability of the neighbors.

It is important to note that our conclusions about meadow
network impact are based on a network structure derived from
available adult movement data and the simplest possible
dispersal kernel in the absence of other data. The extent to
which this approach approximates actual toad dispersal
patterns remains largely unknown. Our modeling framework
can easily accommodate more detailed dispersal data collected
in the future. Additional analyses, however, suggest that
increasing the dispersal distance 5-fold or changing the shape
of the dispersal kernel to a beta distribution do not change the
outcomes reported here.

Landscape Scale Patterns
Taken together, these patterns suggest Yosemite meadows

that are ‘environmentally good’ for A. canorus breeding also
tend to be spatially clustered and connected (i.e., they have
high ‘network quality’). In Figure 3 we plot the mean predicted
Environmental Model probability of breeding across all
meadows within each watershed unit (see Methods) against
the coefficient of variation in probability among meadows within
that watershed. Watersheds with high mean meadow
probability of breeding tend to have low variation among
meadows (Figure 3a). Similarly, those watersheds with the
highest average breeding probability across meadows are also
the watersheds with the highest normalized network
improvement due to the influence of nearby high probability
meadows (Figure 3b). Together these trends suggest that
intrinsically high quality meadows tend to be clustered within
watersheds. Watersheds with the highest proportion of
meadows with predicted A. canorus breeding are themselves
aggregated at the eastern edge of the park (Figure 4).
Interestingly, known breeding meadows with high deletion
impact on park-wide summed breeding probability (Figure 4,
solid red symbols) are not in the watersheds with the highest
proportion of meadows with predicted breeding (Figure 4, red
watersheds). They tend to occur in watersheds where only
20-50% of the meadows are predicted to have breeding (Figure
4). The spatial aggregation of both observed and predicted
high probability A. canorus breeding meadows within Yosemite
suggests that conservation of A. canorus could be optimized at
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Figure 2.  Disentangling intrinsic meadow ‘environmental quality’ from its spatial ‘network quality’ with respect to
predicted A. canorus breeding.  a) Normalized Network Improved breeding probabilities ((Network Boosted probability –
Environmental Model probability) / (1 – Environmental Model probability)) for each meadow as a function of the mean Environmental
Model probability. Symbol colors represent field survey results (Breeding detected (red), Breeding not detected (blue), and Meadow
not visited (black). b-c) Total Influence (Gi) of meadow deletion (the decrease in park-wide breeding probability summed across all
meadows after deleting that meadow from the network) as a function of the Environmental Model and the Network-Boosted GLM
probabilities. Horizontal dotted lines indicate the 90th percentile of meadow deletion impact, and solid red symbols are the known
breeding meadows within that 90th percentile. Vertical dotted lines in all panels represent the threshold probability that maximizes
both true positives and true negatives predicted by the model.
doi: 10.1371/journal.pone.0072200.g002
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the watershed scale. This approach could target a) large,
connected, clusters of meadows with high environmental
quality with the potential to support a resilient meta-population,
b) smaller clusters of meadows that may contribute most to the
broader park-wide A. canorus distribution, and c) isolated A.
canorus meadows that may be vulnerable to permanent
extirpation. Similarly, this approach could also predict currently
unoccupied meadows that may especially valuable for
restoration efforts.

Conclusions

Using the Yosemite Toad (A. canorus) as a case study, we
present a network extension of a static species habitat
occupancy model that enables inferences about the relative
role of intrinsic ‘environmental quality’ vs. ‘network quality’ of
habitat patches linked by dispersal. This approach maximizes
the use of limited species presence/absence data to estimate
spatial processes where extensive colonization-extinction data
are not available to parameterize a dynamic patch-occupancy
model [3] and where sampling gaps in the landscape preclude

Figure 3.  Watershed scale patterns of predicted breeding.  a) Watersheds with high mean predicted probability of A. canorus
breeding (Environmental Model) tend to have low coefficient of variation (CV) in breeding probabilities among meadows within the
watershed. b) Watersheds with high mean breeding probability across also show high normalized network improvement in the
predicted breeding probabilities due to spatial clustering of ‘intrinsically good’ meadows. ‘Normalized network improvement’ is the
proportional increase in Environmental Model predicted probability relative to the maximum improvement possible.
doi: 10.1371/journal.pone.0072200.g003
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Figure 4.  Observed and predicted distribution of meadows and watersheds with A. canorus breeding in Yosemite National
Park.  The watersheds (Cal 2.2.2 watershed planning units) are colored by the percent of meadows within the basin that are
predicted by the Network Boosted GLM model to have breeding. The symbols are centroids for all 2,558 contiguous meadows in the
park. Pink and/or red symbols indicate a meadow with observed A. canorus breeding at least once between 1992–2010. Blue
symbols were visited at least once with no A. canorus detected. Small black dots are meadows that have not been visited. Solid
read symbols are meadows with breeding that are in 90th percentile of impact on park-wide breeding probability if deleted. Note that
meadows with high deletion impact are not in the watersheds with highest proportion of ‘good’ meadows.
doi: 10.1371/journal.pone.0072200.g004
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the use of spatial autocorrelation in species presence to infer
the role of dispersal [9].

Despite the relatively coarse scale of environmental
covariates we could gather for all 2,558 meadows in Yosemite,
our simple model had ~84% or higher true presence and
absence rates when tested against A. canorus breeding
observations. Multiple model approaches (e.g., three GLM’s
and three GAM’s) all had similar rank-order predictions of A.
canorus breeding probabilities despite differences in which
covariates were included and the shapes of the functions.
Three likely sources of prediction error include:

1: Lack of detection by field observers
False positives (meadows with predicted breeding but where

no breeding was observed) could be the lack of detection
rather than the absence of A. canorus. Data from double
surveys of over a five year period (2007-2011) suggest that the
probability of detecting A. canorus if it is indeed breeding is
approximately 75% (G. M. Fellers, unpublished data). Field
observations suggest that sites visited either very early (during
the egg stage) or late (during metamorphosis) likely have lower
detectability and may merit re-visiting.

2: Annual intermittency in breeding
Even if A. canorus adults are present in a meadow, they do

not necessarily breed every year. Thus a false positive can
occur due to lack of breeding that year even if breeding, in
general, occurs in that meadow [22]. In our database, while the
NPS/USGS crew surveys in 2009 and 2010 focused on visiting
previously un-surveyed meadows, each year an average of
152 meadows had a prior survey. On average 42% of those
meadows with prior breeding did not have detected breeding in
the re-survey, and 17% of those with a prior visit and no
detected breeding, but high predicted breeding probability, had
breeding detected in the subsequent visit. Further field
sampling targeted at meadows with high predicted breeding
probability could help better characterize these patterns of
intermittency. Based on our model, we would predict higher
levels of intermittency for meadows with marginal ‘intrinsic’
environmental quality but high ‘spatial quality’ (i.e., Figure 2a,
Quadrant 1).

3: Fine-scale habitat characteristics
Even if the coarse-scale environmental and geo-spatial

attributes of a meadow are conducive to A. canorus breeding,
whether or not breeding is realized very likely depends on a
suite of fine scale aquatic habitat features, such as shallow
water with solar exposure that persists long enough for larval
development to be completed. Similarly, meadows with low
predicted breeding probability that had observed breeding (i.e.,
‘false negatives) could be cases where the coarser scale
attributes did a poor job of predicting these finer scale habitat
features.

4: Extirpation of the species
Some meadows with predicted, but not observed, breeding

(false positives) could have suitable breeding habitat (based on

coarse environmental and spatial predictors) but lack A.
canorus due to local extirpation from anthropogenic stressors.
Further data on the spatial distribution of different potential
stressors across meadows in the park would be necessary to
fully evaluate this hypothesis.

Given these potential sources of error, it is impressive that
our simple linear model approach, based on coarse meadow-
scale attributes, had ~84% accuracy in predicting meadows
with (and without) A. canorus breeding. Our results suggest
that environmental and network ‘quality’ largely coincide for the
vast majority of A. canorus breeding meadows in Yosemite. In
other words, meadows with high intrinsic predicted breeding
probability tend to be surrounded by other intrinsically ‘good’
neighbors (that also have good neighbors). Outliers from this
trend highlight breeding meadows with high individual
environmental quality that are very isolated from other high
environmental quality meadows (Figure 2a, Quadrant 3) and
may merit special conservation attention. Perhaps surprisingly,
clusters of meadows with lower predicted environmental quality
may contribute disproportionately more to A. canorus breeding
at the entire park scale than do meadows in spatial clusters of
high environmental quality meadows (Figures 2b and 4).

By incorporating a spatial network structure into a static
species habitat occupancy modeling framework we used
minimal occupancy data to estimate the relative importance of
the environmental versus network quality of individual habitat
patches in a landscape context. This approach can inform
management decisions for A. canorus by predicting: a)
breeding ‘hotspots’ in Yosemite where clusters of high quality
breeding meadows are potentially linked by dispersal, b) high
environmental quality breeding meadows that are isolated from
other such meadows, and c) breeding meadows with marginal
environmental quality that may critically depend on (or
contribute to) the quality of their network neighborhood. These
results also help focus the collection of additional data on
dispersal, genetics, fine-scale habitat quality, and potential
stressors (e.g., disease) to inform the designation of core
conservation areas for different management objectives (e.g.,
meta-population stability, genetic diversity, refugia from
disease outbreaks, high impact restoration sites). This network
extension of a static species occupancy model may also be
useful for predicting source and sink populations for other rare
species when sufficient occupancy data or colonization-
extinction data are limited.
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