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Abstract. How best to predict the effects of perturbations to ecological communities has
been a long-standing goal for both applied and basic ecology. This quest has recently been
revived by new empirical data, new analysis methods, and increased computing speed, with the
promise that ecologically important insights may be obtainable from a limited knowledge of
community interactions. We use empirically based and simulated networks of varying size and
connectance to assess two limitations to predicting perturbation responses in multispecies
communities: (1) the inaccuracy by which species interaction strengths are empirically
quantified and (2) the indeterminacy of species responses due to indirect effects associated with
network size and structure. We find that even modest levels of species richness and
connectance (;25 pairwise interactions) impose high requirements for interaction strength
estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless,
even poorly estimated interaction strengths provide greater average predictive certainty than
an approach that uses only the sign of each interaction. Our simulations provide guidance in
dealing with the trade-offs involved in maximizing the utility of network approaches for
predicting dynamics in multispecies communities.

Key words: community matrix; disturbance; ecosystem-based management; interaction strengths; loop
analysis; observation error; prediction uncertainty; press experiments.

INTRODUCTION

A long standing, important, but still poorly solved

problem in ecology is how best to predict the responses

of species subjected to natural and anthropogenic

disturbances. Natural communities are simply too

species rich for all aspects of their complexity to be

completely known. Consequently, virtually all efforts to

understand community dynamics rely on simplifying

assumptions, either formal or informal. These assump-

tions range from what types of interactions are most

fundamental (e.g., trophic, competitive, mutualistic), to

what species have the greatest impact (e.g., keystones,

dominants), to what features of their interactions are

most critical in driving specific responses (e.g., distribu-

tions, interaction strengths, nonlinearities). All ap-

proaches seek to distill the complexity of nature down

to manageable and measurable levels that nonetheless

allow reliable predictions of system behaviors to be

made.

The central feature of these efforts is the notion that

all ecological communities are composed of species

connected to each other both directly and indirectly

through the shared network of direct species interac-

tions. The presence of indirect effects means that species

need not interact directly to affect each other’s

populations, and that direct effects may be counteracted

by indirect effects. For example, in an intraguild

predation scenario (Fig. 1), the net effect of the

intermediate consumer (B) on the top consumer (A)

arises from both its positive direct effect as a source of
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food, but also a negative indirect effect caused by

exploitative competition for their shared resource (C).

Insights into the structure of community interaction

networks have thus been fundamental to our under-

standing of the factors that organize communities and

affect their dynamics through the propagation of

perturbations (Wootton 1994, Polis and Winemiller

1996, Bascompte 2009). Accordingly, calls for more

highly resolved empirical networks and the quantifica-

tion of their interaction strengths are pervasive in the

ecological literature (e.g., Borer et al. 2002, Cohen et al.

2003). The application of network approaches has also

become important in applied ecology, where holistic,

ecosystem-based approaches to the management of

multispecies communities are increasingly advocated.

Consideration of interaction networks and their indirect

effects is becoming common in fisheries management,

pest control, and conservation science (e.g., Ramsey and

Veltman 2005, Macfadyen et al. 2009, Worm et al.

2009).

The complexity of species interaction networks itself

nevertheless poses several major obstacles for the

prediction of community effects following even simple

perturbations. Primary among these are the difficulty of

quantifying the strengths of species interactions, and the

manner by which loops of reticulate interaction chains

can magnify or dampen the effect of each direct

interaction (Fig. 1). While these problems are generally

appreciated, it is not yet clear how severely they limit

our ability to understand community dynamics, espe-

cially given the limited information upon which com-

munity-wide analyses are virtually always based. Yodzis

(1988a, b) was among the first to quantify the dramatic

effects that the misspecification of interaction strengths

can have for predictions of community dynamics,

showing that order-of-magnitude errors in the estima-

tion of interaction strengths could routinely reverse the

direction by which species abundances are predicted to

respond to a perturbation elsewhere in the food web (see

also Montoya et al. 2009). Indirect effects and variation

in interaction strengths can combine to affect positive

species responses even in systems of pure competition

where each species’ direct effect on another is negative

(Stone and Roberts 1991, Roberts and Stone 2004).

Others have highlighted how much of this directional

indeterminacy is affected by network topology alone,

independent of variation in interaction strengths (Dam-

bacher et al. 2002, 2003a).

A systematic understanding of when topology and

imprecise interaction strength estimates will combine to

limit predictive success is essential in the careful and

robust application of network approaches. We therefore

revisit Yodzis (1988a, b) and use empirically based and

model food webs of varying size and complexity to

systematically ascertain how precisely the strengths of

species interactions must be estimated to accurately

predict the directional response of species abundances to

perturbations. Interaction strengths are now commonly

estimated by a variety of approaches (Wootton and

Emmerson 2005, Novak and Wootton 2010), but the

predictive potential of these or qualitative approaches in

species-rich systems remains largely unknown.

We make use of the community matrix (Levins 1968)

as a means of encapsulating the strength and topology

of all the pairwise direct interactions in a network.

Indirect effects such as trophic cascades are emergent

consequences of these direct interactions, mediated

solely by changes in species abundances. Our analyses

focus on predicting the long-term effects of small press

perturbations on species abundances and thereby differs

from other analyses assessing the effects of complete

species removals (e.g., Dunne et al. 2002). Press

perturbations (the systematic change to any parameter

affecting a population’s growth rate, as in the contin-

uous removal or addition of individuals) are represen-

tative of many of the disturbances that communities

experience, such as the effects of fisheries harvest,

pollution, eutrophication, or a controlled experiment

(Bender et al. 1984, Yodzis 1995). Application of

theoretical press perturbations to the community matrix

reveal the net effects of such disturbances on equilibrium

species abundances, as shifts in abundances propagate

through a community via all its direct and indirect

interactions. The power of this approach is that it

stipulates each species’ dynamics only as

dNi

dt
¼ fiðN1;N2; . . . ;NsÞ i ¼ 1; . . . ; S

where the function fi could represent any conceivable

relationship between the abundance (N ) of species i and

all other S species (Yodzis 1981, 1988a, 1995). Each ij

element of the community matrix represents the partial

FIG. 1. The potential for indirect effects and the misesti-
mation of direct interaction strengths to combine and reverse
the predicted response of a species to perturbations elsewhere in
the community is evident even in networks of low complexity.
In an intraguild predation system, a perturbation that increases
the abundance of the intermediate consumer (B) could affect
either an increase (þ), a decrease (–), or no change in the
abundance of the omnivore (A) if the strength of their direct
interaction were to be respectively estimated to be greater, less
than, or precisely equal to the magnitude of their indirect
interaction as mediated by their shared basal resource (C).
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derivative of fi with respect to the abundance of species j

(i.e., Aij ¼ ]fi/]Nj), reflecting the direct effect of a small
change in species j’s abundance on species i’s growth

rate. The underlying structural conjecture is thus that
each species’ dynamics can in fact be described by some

continuous function. Species interactions and dynamics
need not themselves be linear, but rather are assumed to
be well-represented by a linearization near equilibrium

abundances (Stone and Roberts 1991, Haydon 1994).
Our analyses therefore provide a first-order rendition of

other more detailed, restrictive, and data-hungry mod-
eling efforts.

Our findings caution against placing too much weight
on predictions from networks with more than ;25

pairwise interactions in the absence of exceptionally
accurate empirical data. However, we also show that

even comparatively poorly quantified interaction
strengths offer more predictive reliability on average

than does a qualitative approach that specifies only
network topology and the sign of each interaction.

Further analyses investigating the effects of network size
and complexity on the prevalence of topological

indeterminacy offer guidance in the application of
network approaches in community ecology by quanti-

fying the limits of their predictive reliability. We
conclude by discussing alternative strategies to maximize
the utility of network approaches for predicting

dynamics in species-rich communities.

MATERIALS AND METHODS

Prediction error in empirical food webs

We first conducted a set of analyses based upon 17

empirical food webs whose topologies are considered to
be among the most well-characterized of any interaction

networks available (Appendix B: Table B1; see Dunne et
al. 2002, 2004), although the strengths of their species

interactions are unknown. We studied both the aggre-
gated and original versions of these networks. The

aggregation of taxa with shared sets of predators and
prey reduced the structural biases associated with their
reconstruction (Williams and Martinez 2000), avoided

degenerate community matrices in qualitative modeling
(Appendix A), and remained representative of the

network topologies of nature. In typical fashion we
converted each network to a quantitatively specified

community matrix (henceforth denoted by #A, follow-
ing Dambacher et al. [2003a]) as follows: The diagonal

elements specifying self-limitation terms of all basal
species, baii, were set to �1 (May 1972), while the caii
terms of consumer species were set to 1/1000th of that of
the basal species (Yodzis 1988b). (Henceforth, super-

scripts b and c respectively refer to basal and consumer
species.) By specifying negative diagonal elements we

effectively assumed that all species interactions were
non-saturating (type I- or type III-like functional
responses) and that population sizes were at a feasible

equilibrium (Haydon 1994). Off-diagonal negative top-
down interaction strengths of consumers on their prey,

aij, were drawn from a beta distribution (Beta[1, 4]) to

reflect the skewed nature of empirical interaction
strength distributions (Wootton and Emmerson 2005).

This distribution was truncated such that the effects of
consumer j on resource i were constrained to lie within

the limits caii . aij . baii. Positive bottom-up interaction
strengths were specified as aji ¼�eaij, with conversion

efficiency e set to 0.1 for all interactions. This process of
converting the empirical webs to matrix form introduced

the unavoidable result that only one of any two
reciprocal predators was deemed to feed upon the other.

We specified directionality to this fraction of interac-
tions at random (see also Allesina and Pascual 2008).

The negative of each #
A was inverted to predict the

response of species to press perturbations in their food

web (Bender et al. 1984, Yodzis 1988b). Each element of
�#A�1 reflects the direction and relative (within-column)

magnitude by which the local equilibrium abundance of
a species in row i (N�i ) will respond to a sustained small

input of individuals to the species in column j (Ij)
because

�ð#A�1Þij ¼
]N�i
]Ij

obtained using the differentiation of fi(N1, N2, . . .) ¼ 0

for all i 6¼ j and fj(N1, N2, . . .)þ Ij¼ 0 with respect to Ij
(Bender et al. 1984, Yodzis 1988b). That is, since ]N�i ¼
�(#A�1)ij 3 ]Ij, a small press perturbation Ij will cause a

change in species i’s equilibrium abundance that is
proportional to �(#A�1)ij. The net effects expressed by

the ijth element of �#A�1 occur via all the direct and
indirect chains of interactions linking the two species

(Yodzis 1988b). The diagonal elements of�#A�1 reflect
the net result of each species’ own indirect effects on

itself as mediated by the other species in the network
(Haydon 1994). We used the resulting sign-structure of

each �#A�1 to specify each network’s set of ‘‘true’’
directional responses (i.e., predictions with no estima-

tion error).

Error in interaction strength estimates was then added
to each interaction value of #A. For each non-zero aij we
randomly chose (with equal probability) to draw a new
value either from a [aij, aij 3 F ] uniform distribution,

representing on overestimate of the true aij, or from a
[aij/F, aij] uniform distribution, representing an under-

estimate of the aij, where parameter F specified the
maximum possible proportional error of an estimate
(Yodzis 1988b). This ensured that (1) no directional bias

in misestimation occurred, and that (2) the maximum
possible error was proportional to the magnitude of the

expected interaction strength itself, as is likely to be the
case for empirical estimates (Novak and Wootton 2008).

F was varied systematically between 1 (no error) and 10
(an order of magnitude error, as in Yodzis 1988b) while

ensuring aij , caii for all species. To assess the effects
that this estimation error had on predictive accuracy we

calculated the proportion of elements in�#A�1 without
introduced error that matched the sign-structure of the
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respective elements in �#A�1 with introduced error at

each F error level for each empirical network. The

process of specifying ‘‘true’’ interaction strengths,

adding increasing amounts of estimation error, and

assessing predictive accuracy was repeated once for each

of 100 realizations of A for each empirical network.

To assess the sensitivity of our results to chosen

interaction strength parameters, we repeated our anal-

yses with (1) e set to either 0.5 or 0.9, (2) interactions

specified to an order of magnitude greater strength (aij .
baii ¼ �10), and (3) by drawing aij from uniform

(Beta[1, 1]) or more strongly skewed (Beta[1, 6]) distri-

butions. To assess the utility of focusing future empirical

efforts on measuring only a subset of the interactions in

a community we repeated the analyses allowing either

the strength of (1) only the strongest or (2) only the

weakest interactions to be estimated with error (i.e., the

upper or lower 50th quartile of aij values, respectively).
We also assessed the degree to which the species-specific

linkage densities of a network (the proportion of species

in a network connected to only one or two other species)

could be used to explain predictive success.

We next investigated the reliability of predictions of

species responses when interaction strengths are entirely

unknown and only the structure and qualitative sign of

each non-zero interaction of a network is specified

(Mason 1953, Levins 1968). Each aggregated network’s
#A was converted to qualitatively specified form

(henceforth denoted by 8A following Dambacher et al.

2002) by removing information on the magnitude of aij
elements. We then used the matrix methods of loop

analysis to predict directional species responses by

calculating the matrix adjoint, adj(�8A) ¼ �8A�1/

det(�8A) (Dambacher 2002; Appendix A) and deter-

mined the proportion of elements in adj(�8A) that

matched the sign-structure of the respective elements in

�#A�1 without error.

Prediction error in model food webs

We used the niche model algorithm of Williams and

Martinez (2000) to tease apart the effects of network size

and complexity inherent in our use of the empirical

networks. This algorithm, which has seen broad

validation as a way to generate ‘‘realistic’’ networks by

a variety of metrics measured in empirical food webs

(e.g., Williams and Martinez 2000, Dunne et al. 2004,

Stouffer et al. 2006), allowed us to create replicate food

webs of systematically varying species richness and

connectance. Requiring the specification of species

richness (S ) and connectance (Cd, the proportion of

possible interactions that is realized as L links, L/S2), the

algorithm begins by assigning each species to a random

position on a one-dimensional niche axis (ni drawn from

a Unif [0, 1]). Each species’ diet breadth along this axis is

stochastically specified, with its potential diet range, ri,

and diet center, ci, defined as ri ¼ ni 3 xi, where xi ;

Beta[1, 1� 1/(2Cd)] and ci ; Unif [ri/2, ni] (Bagdassarian

et al. 2007). Species i feeds on all species within its

feeding range, but the species with the smallest ni does

not prey on any other species (Williams and Martinez

2004).

We created food webs of 6 to 100 species at five

possible connectance levels (Cd ¼ (0.05, 0.1, 0.15, 0.25,

0.35) 6 0.02) reflecting the range of richness and

connectance levels observed in the empirical networks

(Table B1). These were converted into community

matrix form if all species were connected in a single

network. We then repeated our assessment of quantita-

tive interaction strength estimation error (�#
A
�1 vs.

�#A�1
error) and loop analysis (�#A�1 vs. adj(�8A)) as

above, calculating the proportion of qualitative matches

across 100 replicate networks having positive determi-

nants at each richness-connectance level.

Limits to structural predictive reliability

If quantitative and qualitative analyses of food web

perturbations may frequently be inaccurate, one would

like to know which networks will have this limitation

and which will not. To approach this issue we used the

weighted-predictions matrix (W) of loop analysis to

further investigate how network size and complexity

contribute to variation in predictive reliability associated

with network structure itself (Dambacher et al. 2002,

2003a). Each element of W reflects the ratio of the net

effects (positive or negative) of a species in column j on

the species in row i and the total number of feedback

loops that link the two species in 8A (Appendix A). A wij

value of 0 thereby indicates that half of the feedbacks

linking two species have net positive structural effect

and the other half have net negative effect (a 1:1 ratio); a

value of 0.5 reflects a ratio of 3:1. Species pairs with low

wij are expected to have low structurally predictive

reliability, their net effects being more dependent upon

the strengths of their direct and indirect interactions,

while pairs with high wij are expected to have reliably

predictable net effects. Dambacher et al. (2002) suggest a

confidence cut-off level of 0.5 for the assignment of

structurally reliable predictions because predictions with

wij . 0.5 exhibit high sign determinacy; predictions

having wij . 0.5 were associated with consistent

predictions .90% of the time in simulations (Dam-

bacher et al. 2003a, Hosack et al. 2008). Note that high

structural reliability need not necessarily indicate

prediction correctness.

We used the niche model to create food webs of 6–24

species at connectance levels of 0.05–0.35. Prior

applications of the weighted-predictions matrix have

been restricted to networks of �10 species (Dambacher

et al. 2002, 2003a, b, Hosack et al. 2008). Self-limitation

was imposed on all species by setting diagonal elements

to �1 (Dambacher et al. 2002, 2003a). A potential

network was rejected when det(�8A) . 0 so that all

accepted networks could be inverted. For each of five

networks produced at each possible richness-connec-

tance combination we used Mathematica (Wolfram

Research, Inc, Champaign, Illinois, USA) to calculate

April 2011 839PREDICTING RESPONSES TO PERTURBATIONS

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



W (Appendix C). We calculated the mean and 95th

percentile of weighted predictions within each W, and

tallied the number of predictions having wij . 0.5 to

assess how predictive reliability varied with network

size, connectance, and the total number of predator–

prey interactions.

RESULTS

The accuracy of interaction strength estimates

Increasing amounts of introduced error in interaction
strength estimates led to a decreasing proportion of

correctly made predictions in all empirical food webs
(Fig. 2). In some networks (e.g., Little Rock lake and

Caribbean Reef ) the mean proportion of correctly made
predictions dropped to 50% (equivalent to predicting a

species’ response by flipping a coin) when interactions
were not estimated to within 6100% of their true value

(proportional error F , 2, Fig. 2a). Other networks
(e.g., Canton Creek and Ythan Estuary) exhibited an

average of .75% correct predictions at this level of
estimation accuracy. These networks retained better-

than-random mean predictive success even when inter-
action strengths were estimated to within only an order
of magnitude of their true value (F ¼ 10). With one

exception (Bridge Brook lake) our use of aggregated
rather than non-aggregated versions of the empirical

networks had either little effect on these results or
increased mean predictive success by up to 9.5% at

intermediate levels of estimation error (Appendix B: Fig.
B5). With increasing estimation error the mean propor-

tion of correctly made predictions tended to converge on
the predictive success of loop analysis (r2¼0.95, t¼12.3,

P , 0.001 at F¼ 10, Appendix B: Fig. B1). Variation in
predictive success was large however, with many

individual quantitative realizations performing worse
than their qualitative counterpart. Mean predictive

success at an order-of-magnitude error was positively
but weakly correlated with the proportion of species in a

network that were linked to only one or two other
species (r2¼ 0.46, t¼ 1.98, P¼ 0.07). The 95th quantile
of correctly made predictions at F ¼ 10, on the other

hand, was positively and strongly correlated with the
proportion of species in a network that were linked to

only one or two other species (r2¼ 0.93, t¼ 10.20, P ,

0.0001; Appendix B: Fig. B4).

Relative to the situation where all interactions were
measured with error, the rate by which mean predictive

accuracy declined with increasing error was little
affected when only weak interactions were measured

accurately (Fig. 2b), but was reduced when strong
interactions were estimated accurately (Fig. 2c). How-

ever, at high F values, even these simulations, with all
strong interaction estimated without error, illustrated

extremely poor predictive success (Fig. 2c). Alternate
conversion efficiencies, maximum interaction strengths,

and interaction strength distributions generally had
negligible effect on these patterns, although conversion

efficiencies of e¼ 0.9 tended to reduce the rate by which
predictive accuracy declined as estimation error in-
creased (Appendix B: Fig. B6).

We found the same general result in simulations of

niche model networks: falling accuracy in interaction

FIG. 2. The proportion of qualitatively correct species
response predictions declines as a function of the error by which
interspecific interaction strengths are estimated in 17 well-
characterized empirical food webs. The mean for each network
is in black; n ¼ 100 individual true-aij realizations for each
network are in gray. A proportion of 0.5 corresponds to
predictive success matching that of flipping a coin. The figure
illustrates the rate of decline observed when: (a) all interactions
are estimated with equal likelihood of error; (b) only the
weakest interactions are estimated without error; and (c) only
the strongest interactions are estimated without error. An error
factor of 1 corresponds to no estimation error, while an error
factor of 10 corresponds to interaction strengths being
estimated to within an order of magnitude for (a) all, (b) the
strongest, or (c) the weakest interactions. The proportion of
correct predictions made for each network by loop analysis,
which uses network topology alone assuming no knowledge of
interaction strengths, is also shown (see Methods: Prediction
error in empirical food webs). Note the log scale of the x-axis.
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strength estimates decreased the mean proportion of

correctly made predictions (Fig. 3). As with the

empirical networks, the mean proportion of correct

predictions made with quantified interaction strengths

tended to converge on the proportion of correct

predictions made by loop analysis as estimation error

increased (r2 ¼ 0.95 at F ¼ 10; Appendix B: Fig. B2).

Predictions were fully indeterminate (50% predictive

success) in all networks of 100 species when interaction

strengths were not estimated to within 6100% of their

true value (F , 2) regardless of connectance level (Fig.

3d). In networks of 20 species the proportion of correct

predictions approached 50% when interaction strengths

were estimated with F . 4 when Cd . 0.15, but

remained above 80% when Cd ¼ 0.05 even when

interactions were estimated to within an order-of-

magnitude accuracy (F ¼ 10, Fig. 3b). Networks of 8

species and Cd ¼ 0.1 retained 100% correct predictions

regardless of estimation error. This occurred because

they consisted of either a simple linear interaction chain

or a non-reticulate tree structure (Appendix B: Fig. B9).

Limits to qualitative reliability scores

The mean and 95th percentile of weighted predictions

values, as well as the proportion of predictions deemed

reliable (i.e., wij . 0.5), diminished rapidly as network

size and connectance increased (Fig. 4a–c). On average,

no structural reliability score exceeded 0.5 in networks

of 24 species regardless of their connectance. Only in

networks of low connectance (Cd � 0.15) was the

average proportion of structurally reliable predictions

likely to exceed 20% in networks of 10 or more species.

A good predictor for the proportion of predictions

having wij . 0.5 was the total number of predator–prey

interactions present in the network (Fig. 4d). Only 1.5%
of all networks with more than 25 links had more than

1% of their predictions associated with wij values greater

than 0.5. All networks with more than 35 links had less

than 1% structurally reliable predictions.

DISCUSSION

The pessimist’s view

Natural communities typically contain hundreds to

thousands of species with the potential of interacting

with one another in a vast number of ways (Polis and

Strong 1996; see Plate 1). Our findings therefore suggest

a daunting scenario for predicting the response of

species to perturbations elsewhere in their community.

Using simplified descriptions of nature’s true complexity

that focused only on trophic interactions, our analyses

FIG. 3. The mean proportion of qualitatively correct species response predictions declines as a function of the error (F ) by
which interspecific interaction strengths are estimated in niche model networks of varying size and complexity. Loop analysis uses
network topology alone, assuming no knowledge of interaction strengths. See Methods: Prediction error in empirical food webs and
Fig. 2 for details. Only networks of (a) species richness S ¼ 8, (b) 20, (c) 50, and (d) 100 species are shown; others are shown in
Appendix B: Fig. B7. Connectance reflects directed connectance.
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of empirical and model network structures demonstrate

the accuracy that is needed in estimating species

interaction strengths to avoid erroneous predictions

due to indirect effects. Our ability to predict the response

of a species to a perturbation elsewhere in its network

declined to the level of flipping a coin in most empirical

networks, and in model networks of �50 species, when

interaction strengths were not measured to within 100%
of their true value (Figs. 1 and 2). As estimation errors

were assumed to follow uniform distributions in our

simulations, the ardent pessimist might even argue that

average estimates need be twice as accurate still. Seeking

to predict only the direction, not the magnitude, of a

species’ response, our simulations assumed non-saturat-

ing interactions and no interaction modifications, prey

switching, or spatiotemporal variation in interaction

strengths, all of which occur in nature (Doak et al.

2008). Therefore, observation error and structural

indeterminacy due to indirect effects alone set the limits

of predictive success in networks of moderate to large

size or complexity. Our use of aggregated rather than

non-aggregated versions of the empirical networks

further simplified their true complexity of species-

specific differences. The niche model networks that

teased apart the effects of size and complexity suggest

extremely limited predictive reliability in realistically

connected networks of more than 24 species, or more

generally in networks exhibiting more than ;25 pairwise

species-to-species interactions (Fig. 4). Even more

discouragingly, simulations that assumed perfect knowl-

edge of all strong interaction still yielded poor predictive

power if weak interactions were not reasonably well

characterized (Fig. 2). This implies that multiple weak

interactions have the power to strongly shape commu-

nity-wide responses to perturbations. Given the gener-

alized assumptions of our analyses these conclusions are

expected to hold for alternative predictive approaches

having more specific model formulations (e.g., Ecopath,

allometric models [see Yodzis 1981, 1988a, 1995]).

The optimist’s view

The good news is that there are numerous counter-

arguments to this discouraging interpretation of our

results. For one, our approach assumed that all post-

perturbation dynamics have played-out such that each

species has reached a new point equilibrium abundance.

Even in an empirical reality where perturbations are

more variable and equilibrium conditions may never be

attained, it may be easier to predict short-term, transient

responses. Methods for unraveling the temporal prop-

FIG. 4. Predictive insight into the structural indeterminacy of a network as measured by (a) the grand mean of weighted-
predictions (wij), (b) the mean 95th quantile of wij, and (c) the proportion of predictions deemed reliable (wij . 0.5) decreases
rapidly with increasing network size and connectance (6SE). (d) The proportion of structurally reliable predictions declines to zero
as the number of interspecific links in a network exceeds ;25. See Methods: Limits to structural predictive reliability and Appendix
A for details. Note the break in the x-axis. Connectance reflects directed connectance.
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agation of indirect effects between a system’s equilibria

(Yodzis 1988b, 1995, Higashi and Nakajima 1995,

Takimoto et al. 2009) or in systems of bounded non-

equilibrium dynamics (Puccia and Levins 1985, Dam-

bacher et al. 2009) are available. In theory certainly,

first-order impacts are completely predictable, depend-

ing only on the sign and strength of the interactions

between the perturbed species and its directly linked

neighbors (Yodzis 1995). How quickly this predictabil-

ity declines empirically will be a function of the

timescales over which species abundances respond to

propagate the perturbation. Empirical studies suggest

that such propagation can occur rapidly (Menge 1997).

An important empirical question emerging from our

analyses concerns the accuracy by which interaction

strengths can in fact be estimated. This is an essential

issue because interaction strengths among species pairs

vary considerably in real food webs (Wootton and

Emmerson 2005). Notwithstanding spatiotemporal pro-

cess variation, is a level of accuracy to within 100% (F¼
2) easily obtained or clearly out of reach for most

empirical systems? Very few studies have explicitly

compared independent interaction strength estimates in

natural contexts. The predictions of some interaction

strength estimates have shown remarkable correspon-

dence to independent experimental effects (e.g., Woot-

ton 1997, O’Gorman et al. 2010). A recent study directly

comparing per capita interaction strengths derived from

manipulative experiments to those of an observational

approach yielded estimates that differed from as little as

5% up to 610% (Novak 2010). These differences are

certainly better than an order-of-magnitude error (F ¼
10; Yodzis 1988b). Further efforts to quantify estimation

accuracy, and to distinguish process from observation

error (Hilborn and Mangel 1997, Wootton and Emmer-

son 2005), would help place the results of our

simulations in context.

Further hope is offered from our analyses by (1) the

variation in the mean predictive success observed

between different empirical networks and (2) by the

variation around the mean predictive success observed

across replicate realizations of each empirical network.

That is, while the mean predictive success of some

networks dropped to 50% quite rapidly with increasing

estimation error, and a large fraction of individual

realizations exhibited worse-than-random predictive

success with only 1% estimation error for some

networks, the converse was also true: Some networks

(e.g., Canton Creek, Ythan Estuary, Scotch Broom, and

Chesapeake Bay) retained better-than-random predic-

tive success even when interaction strengths were

entirely unknown (Fig. 2; Table B1). In other networks

(e.g., Grassland) individual realizations exhibited up to

80% predictive success, even when mean success across

all realizations was only 50% at an order-of-magnitude

estimation error (Appendix B: Fig. B3). These observa-

tions, and the fact that the 95th quantile (rather than the

mean) of predictive success at an order-of-magnitude

error was tightly correlated with the proportion of

poorly connected species in a network (Appendix B: Fig.

B4), indicate that certain network topologies, species in

key topological positions, or the strengths of some key

interactions, are more important for preserving predic-

tive success than are others (see also Montoya et al.

2009). The analyses presented here cannot distinguish

whether these key positions or key interactions directly

correspond to poorly connected species; other species

(or interactions), including richly connected species,

could produce the same results if they are themselves

linked directly to (or directly link) the poorly connected

species. Further analyses are needed to discriminate

between these nonexclusive alternatives to determine the

degree to which particular species characteristics can be

attributed the cause of predictive success. Since mean

predictive success at an order-of-magnitude error was

little affected in simulations where all weak (Fig. 2b) or

all strong (Fig. 2c) interactions were estimated with full

accuracy, the answer is not as simple as distinguishing

among species pairs with strong vs. weak interactions.

Similarly, since networks that exhibited equally poor

predictive success using loop analysis differed in their

mean predictive success at better-than order-of-magni-

tude levels of estimation error, the answer does not lie

with network topology alone. The potential body-size

mediated association between the strengths of a species’

interactions and its structural position in a network may

offer empirical focus to these observations (O’Gorman

et al. 2010); our simulations specified the position of

strong and weak interactions at random.

The way forward

The observation that the mean predictive success of

the quantified interaction strength approach converges

to the predictive success of loop analysis as estimation

accuracy declines suggests that having some knowledge

of interaction strengths will, on average, be better than

having none at all (Figs. 1 and 2). Furthermore, the

accurate estimation of strong interactions reduces the

rate at which mean predictive success declines with

increasing estimation error (Fig. 2c). A better under-

standing of the empirical species-pair attributes associ-

ated with strong interactions may therefore provide a

means to focus empirical efforts to increase predictive

success. Accumulating empirical evidence suggests that

such attributes may include the ratio of predator to prey

body sizes and metabolic rates (Wootton and Emmer-

son 2005, Brose et al. 2008). Furthermore, strong

interactions are likely to be measured more accurately

than weak interactions (Novak and Wootton 2008).

Nonetheless, an exclusive focus on strong interactions is

ill-advised: the accurate estimation of strong interactions

provided no increase in predictive success when weak

interactions were estimated to within an order-of-

magnitude error (Fig. 2). The importance of quantifying

both strong and weak interactions extends to efforts
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assessing the stability of ecological communities (O’Gor-

man and Emmerson 2009).

Other than focusing on the poorly connected species

of a network and increasing the accuracy by which we

measure interaction strengths, what else can we do to

increase predictive success? Our investigation of how

network size and complexity contribute to the decline of

predictive reliability suggest that indirect effects set the

limits in realistically connected networks of more than

24 species (Fig. 4a, b). Networks with more than ;25

links retained extremely limited predictive reliability

associated with their structure alone (Fig. 4c). For

networks of pure competition communities such depen-

dence of net effects on the number of links rather than

species per se has been shown analytically (Roberts and

Stone 2004) and could be used to guide empirical effort.

Our analyses suggest that the further aggregation of

species into trophic groups beyond their mutually

identical predator and prey associations is unlikely to

be fruitful; the resultant increase in connectance can

quickly offset its benefits (Fig. 4). An extensive literature

on species aggregation raises additional concerns (Yod-

zis and Winemiller 1999), including its effects on the

misestimation of interaction strengths (e.g., Gardner et

al. 1982, Bender et al. 1984, Fulton et al. 2003).

An alternative approach might consider only groups

of ,24 species at a time, particularly when these are

organized into network compartments (e.g., Krause et

al. 2003, Allesina and Pascual 2009). When present,

compartments should limit the propagation of indirect

effects to reduce indeterminacy, just as they are thought

to increase network stability (May 1972, Krause et al.

2003). In theory, species receiving or affecting only very

weak interactions, or responding on very different

timescales due to differences in generation times, might

be safely ignored when predicting post-perturbation

population sizes (Schaffer 1981, Bender et al. 1984). The

same should extend to network compartments. Efforts

to predict species responses to perturbations might

thereby be simplified by hierarchical analyses of the less

connected sub-networks. The efficacy of this approach

will depend on the strength of compartmentalization

(the relative number of links between vs. within

compartments) and the extent to which interactions

between compartments are weak. More work is needed

to assess the degree to which species attributes such as

body size, phylogeny, or habitat associations are

associated with objective measures of group membership

(Allesina and Pascual 2009).

An additional means to reduce predictive uncertainty

holds further promise. Where available, prior informa-

tion on how a subset of species responds to known

perturbations elsewhere in their community could be

used to constrain the universe of perturbation responses

expected in other species. For the networks of our

simulations such information was unavailable. Predic-

tive certainty should increase as the ratio of prior

information to network size and complexity increases.

The fusion of loop analysis and Bayesian belief networks

by Hosack et al. (2008) provides a powerful means of

PLATE 1. Analyses of empirical and simulated interaction networks suggest that species interactions must be accurately
estimated to reliably predict the response of species to perturbations elsewhere in their community, even when communities are
relatively species-poor. This small (,0.125 m2) area of the Oregon (USA) intertidal contains at least 30 species visible to the naked
eye of the .300 species that occur in this habitat. Photo credit: R. T. Novak.
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incorporating such knowledge in the context of explicit

network structures and offers an exciting direction for

further development.

CONCLUSIONS

Predicting the response of species to perturbations in

their community will remain a difficult endeavor in all

but the simplest and most well-defined ecological

systems. It seems prudent to restrict the predictive

application of qualitative methods to abstracted net-

works and to communities typically dealt with in

logistically tractable experiments; the power of loop

analysis lies in the analysis of a network’s indeterminacy

to distinguish key uncertainties. Its utility thus remains

complimentary to quantitative methods, as originally

proposed. Ultimately, our ability to predict the conse-

quences of a perturbation rests on empirical factors that

remain poorly addressed by our current understanding:

how well can we measure interaction strengths, what are

the key network elements that confer predictive success,

and how compartmentalized are ecological networks?

Each of these considerations will also control our ability

to assess the stability of ecological communities. More

generally, our results suggest that efforts to predict

community-wide consequences of even very targeted

perturbations must seek to address parameter uncer-

tainty, and hence predictive uncertainty, rather than

assuming that network predictions are robust to either

the structure or interaction strengths that characterize a

community of interest. Thus, until further work is able

to sharpen our predictive methods, cautious and

adaptive management approaches may be more impor-

tant than the holistic modeling of nature’s complexity

itself.
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APPENDIX A

Calculating the weighted-predictions matrix of loop analysis (Ecological Archives E092-072-A1).

APPENDIX B

The topological properties of the empirical food webs, and comparisons of qualitative vs. quantitative predictions, aggregated vs.
non-aggregated food webs, and alternative parameterizations and richness-connectance levels (Ecological Archives E092-072-A2).

APPENDIX C

Mathematica commands for calculating the weighted predictions matrix (Ecological Archives E092-072-A3).
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