
When 2 or more similar species exhibit
habitat overlap, important ecological ques-
tions arise about the way these species suc-
cessfully occupy the same place concurrently
(Brown 1971), the role of habitat structure and
composition in the maintenance of species
separation (Sharples 1983), and the potential
interactions between these species (Schoener
1974, Trombulak 1985). Overlap zones are
sometimes found at habitat edges where vege-
tation structure and composition are transition -
ing (Sheppard 1970). In mountainous regions,
where an elevation gradient additionally affects
temperature and precipitation, these overlap
zones may be especially affected by climate
change (Inouye et al. 1999). Determining spe-
cific envi ronmental correlates of separation is
an important step in understanding potential
reasons for the maintenance of species separa-
tion (Sharples 1983) and is essential for pre-
dicting the po tential effects of climate change
(Ditto and Frey 2007). Determination of these

correlates requires measuring habitat use of
sympatric species both independently and si -
multaneously. A change in habitat use of one
or more species due to the presence of the
other can be a strong indicator of species in -
teraction (Chappell 1978). The genus Tamias
has 22 species in North America, 21 of which
occur in the West. The genus generally oc -
curs in forested regions from valley floors to
above timberline. Several Tamias species over -
lap in their distribution, and the attributed
causes for why they remain separated are
varied (Brown 1971, Chappell 1978, Sharples
1983, Perault et al. 1997). Sympatric Tamias
express a range of tolerance from mutual
exclusion (Chappell 1978) to broad overlap
(Sharples 1983). Brown (1971) found that sepa -
 ration be tween T. dorsalis and T. umbrinus in
the central Great Basin was explained by com-
petitive exclusion. Tamias amoenus similarly
excludes T. minimus in Alberta (Sheppard 1970).
Tamias speciosus and T. amoenus in the
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ABSTRACT.—Interspecies interactions can affect how species are distributed, put constraints on habitat expansion,
and reduce the fundamental niche of the affected species. Using logistic regression, we analyzed and compared 174
Tamias palmeri and 94 Tamias panamintinus within an isolated mountain range of the Basin and Range Province of
southern Nevada. Tamias panamintinus was more likely to use pinyon/ponderosa/fir mixed forests than pinyon alone,
compared to random sites. In the presence of T. palmeri, however, interaction analyses indicated T. panamintinus was
less likely to occupy the mixed forests and more likely near large rocks on southern aspects. This species-by-habitat
interaction data suggest that T. palmeri excludes T. panamintinus from areas of potentially suitable habitat. Climate
change may adversely affect species of restricted distribution. Habitat isolation and species interactions in this region
may thus increase survival risks as climate temperatures rise.

RESUMEN.—Las interacciones entre las especies pueden afectar la manera en que se distribuyen, imponer restriccio-
nes a la expansión del hábitat y reducir el nicho fundamental de las especies afectadas. Por medio de regresión logística,
analizamos y comparamos 174 Tamias palmeri y 94 Tamias panamintinus dentro de una cadena aislada de montañas de la
región Basin and Range del sur de Nevada. Se encontró a T. panamintinus con más frecuencia en los bosques mixtos de
pinos piñoneros, ponderosa y abetos que en los bosques conformados únicamente de pinos piñoneros, al comparar con
lugares al azar. Sin embargo, los análisis de interacción indicaron que, en presencia de T. palmeri, hubo menos probabili-
dad de que T. panamintinus se encontrara en los bosques mixtos y más probabilidad de que se encontrara cerca de las
rocas grandes en la parte sur. Esta interacción entre especies y hábitat sugiere que Tamias palmeri excluye a T. panamin-
tinus de áreas donde el hábitat podría ser apropiado. El cambio climático puede afectar de manera desfavorable a espe-
cies con distribución restringida. Por lo tanto, el aislamiento del hábitat y la interacción entre las especies en esta región
pueden incrementar los riesgos de supervivencia al aumentar las temperaturas ambientales.
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northern Sierra Nevada Mountains (Sharples
1983), and T. minimus and T. umbrinus in the
Uinta Mountains of northeastern Utah (Per-
ault et al. 1997), maintain sympatric overlap
by using different vegetation types.

Much research on Tamias species separa-
tion has naturally occurred within the north-
western United States, likely because this is
where many Tamias species occur. However,
an excellent opportunity exists for expanding
our understanding of species separation within
the southern Basin and Range Province of
North America. This landscape provides ad -
vantages to researchers addressing species in -
teractions and the potential effects of climate
change on species borders. It is an area of
high mountain islands separated by low des -
erts that have isolated many species for thou-
sands of years (Rickart 2001); the steep eleva-
tion gradient provides clear demarcation of
habitat types; and the endemic species con-
tribute significantly to the biodiversity of the
surrounding region (Allen et al. 1991, Lomo -
lino 2001, Rickart 2001, McCain 2007). Global
and regional environmental change threatens
species of restricted distributions (McDonald
and Brown 1992, Rosenzweig and Clark 1994),
and these small, isolated populations are more
susceptible to extinction due to their inability
to replenish populations by immigration. The
effects of environmental change on isolated
populations is of particular importance in arid
regions of southwestern North America, where
a transition to more arid climatic conditions
has been documented, resulting in less precipi -
tation (Seager et al. 2007) and shifts in the tim-
ing of precipitation (Weltzin et al. 2003).

Tamias palmeri and Tamias panamintinus
are isolated species with overlapping distribu-
tions on the Spring Mountains of southern
Nevada. Tamias palmeri occurs from approxi-
mately 2200 m to above 3000 m in elevation
(Best 1993), while T. panamintinus occurs be -
low 2500 m to approximately 1230 m (Best et
al. 1994). Tamias palmeri occurrence is associ-
ated with the lower slopes of fir (Abies con-
color) forest and proximity to water, and in this
species, population size and survival increases
with increasing density of shrub species (Ribes
cereum) (Lowrey and Longshore in review).
Tamias panamintinus has been associated with
singleleaf pinyon (Pinus monophylla) and juni -
per ( Juniperus osteosperma) forests (Best et al.
1994). Tamias panamintinus has been found at

elevations up to 3000 m (Best et al. 1994);
however, it is not found at these elevations in
the Spring Mountains (Deacon et al. 1964).

In this study, we compare and contrast the
habitat associations of T. palmeri and T. pana -
mintinus and estimate the actual distribution
of these 2 species from genetically verified
location data. We then model the potential
distribution based on habitat use and compare
the actual to the potential distributions. Fi -
nally, we analyze the environmental variables
within the overlap zone to determine species
interaction in terms of habitat use.

METHODS

Study Area 

The Spring Mountains are located in the
Basin and Range Province of the eastern
Mojave Desert, approximately 40 km north-
west of Las Vegas, Nevada. The range, consist-
ing largely of sedimentary limestone (Long-
well 1951), contains over 10 peaks above
3300 m, the highest at 3632 m. Vegetation
above 2500 m consists of conifer/mixed coni -
fer forest associations: ponderosa (Pinus pon-
derosa), white fir (Abies concolor), and bristle-
cone pine (Pinus longaeva). Areas below 2500 m
and above the desert region are dominated
by single-leaf pinyon pine and curl-leaf moun-
tain mahogany (Sada and Nachlinger 1996).
Tamias habitat is isolated from similar habitat
in neighboring mountain ranges by the sur-
rounding desert floor that is just above 700 m.
Annual precipitation is typically <13 cm in
the lower areas and as high as 71 cm at higher
elevations. The upper slopes are further sub-
ject to extreme seasonality, with snow cover
5–7 months of the year. Mean yearly average
temperature is 10 °C at 2000 m (Sada and
Nachlinger 1996).

Animal Location Data, Identification, 
and Actual Distribution

We used animal locations from thirty-four
2-km trapping transects to estimate the actual
distribution of T. panamintinus. We trapped 12
transects within the pinyon pine/juniper habi-
tat association at the lowest elevations, 12
across the ponderosa–pinyon pine transition
zone, and 10 within the ponderosa pine asso-
ciation to systematically sample the range
from June through August of 2008 and 2009.
Transects were 2 km long and placed not less
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than 2 km or more than 5 km apart. Within
each transect, one 25 × 9 × 8-cm folding alu-
minum trap (H.B. Sherman Trap Co., Tallahas-
see, FL) was set every 40 m along a single line
for 4 days (50 traps per transect). Different
chipmunk species are generally difficult to
distinguish, and T. palmeri and T. panamin -
tinus are especially similar in appearance
(Best 1993). Therefore, we used genetic (mi -
tochondrial amplification) analyses on tissue
samples to identify species (B. Riddle and S.
Mantooth, University of Nevada, Las Vegas,
genetics lab). We maintained a buffer of 300 m
above the highest elevational extent of loca-
tions successfully capturing T. panamintinus
to estimate the distribution area across the
Spring Mountains. To establish the actual dis-
tribution of T. palmeri, we used the results
from Lowrey and Longshore (in review), who
used similar methods.

Vegetation and Topographic Data Collection

Vegetation species composition, structure,
and topographical variables were measured
within 8 m radius plots centered on each trap
that successfully captured a chipmunk (Table 1).
Habitat variables were also measured at 350
plots randomly placed throughout the study
area. Percentage of tree, shrub, and forest lit-
ter cover were estimated by standing at 20
systematically placed points within each plot
and looking straight up (canopy) and down

(shrub, litter) through a 20 cm long by 3 cm
diameter tube. Percentage cover was derived
by counting the number of times the canopy
(or shrubs) covered the line of sight (hits) and
dividing that number by 20 (total; modified
from Dueser and Shugart 1978). Densities of
trees, shrubs, snags, downed logs (>0.5 m in
diameter and >2 m in length), and large rocks
(≥1 m × 1 m) were measured by census
within each plot. Tree heights were measured
with a hypsometer. Water source locations,
either wet ground or open water, were also
documented. Percentage slope, aspect (2 cate-
gorical variables of north [=1] or south [=0]
facing), and distance to water were measured
in a GIS application (ArcMap 9.3, Environ-
mental Systems Resource Institute, Redlands,
CA). Hillshade, a geometric measure of how
much radiation the surface is exposed to as a
function of surface angle (range 0–255, 255 =
maximum radiation), was measured in a GIS
application. As a measure of general forest
type, we used the P. monophylla, A. concolor,
and P. ponderosa mixed forest vegetation clas-
sifications of the Southwest Regional Gap
Analyses Project (ReGap; 2007) as categorical
variables (either species present = 1, not pres -
ent = 0).

Habitat Availability and Interaction

We used logistic regression analyses with
94 successful T. panamintinus and 150 random
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TABLE 1. Habitat variables measured for a Panamint and Palmer’s chipmunk interaction study in the Spring Moun-
tains, Nevada, 2008–2009.

Habitat variable Mean SD Range

% cover pinyon-juniper 25.7 28.2 0–95
% cover mahogany 12.6 9.2 0–95
% cover ponderosa 8.3 12.4 0–95
% cover fir 3.5 13.0 0–85
% cover sagebrush 17.4 23.0 0–100
% cover Ribes shrub 2.7 6.4 0–45
% cover forest litter 37.4 32.3 0–80
Pinyon-juniper density/plot 1.8 2.8 0–13
Mahogany density/plot 2.1 3.7 0–20
Ponderosa pine density/plot 1.4 3.0 0–33
Fir density/plot 3.4 5.9 0–39
Sagebrush density/plot 6.4 9.3 0–58
Ribes shrub density/plot 1.3 2.8 0–17
Distance to water (m) 2158.2 1797.7 80–8026
Occurrence of water source 0.02 0.1 0–1
Density of downed log/plot 0.5 1.2 0–15
Density of large rocksa/plot 0.5 1.2 0–10
% slope 35.5 16.4 0–122
Hillshadeb 141.9 104.7 0–254
aLarge rocks = 1 m × 1 m.
bMeasure of sun radiation intensity as a function of surface angle. Azimuth from 12pm 7/2009.



points to create the T. panamintinus re -
source selection function (RSF) model of habi -
tat availability (Menard 1995, Manly et al.
2002, Johnson et al. 2006; SPSS statistical soft-
ware, Somers, NY). These RSF values are

proportional to the relative probability of ani-
mal occurrence across the available habitat
(Boyce and McDonald 1999, Johnson et al.
2006). We then used the RSF model as devel-
oped by Lowrey and Longshore (in review;
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Fig. 1. Actual distribution extents of Tamias palmeri and T. panamintinus estimated from genetically verified location
data. Spring Mountains, Nevada, 2009.



RSF = [–0.0365 * percent slope] + [–0.0018 *
distance to water sources] + [0.1562 * aspect]
+ [0.7164 * bristlecone/fir mixed forest] +
[–1.326 * ponderosa/pinyon pine mixed for-
est]) to determine T. palmeri habitat availabil-
ity. Aspect and forest variables were categori-
cal. Model chi-square tests and Wald statistics
were used to assess overall model fit and the
strength of individual variable contributions.
Model strength and accuracy was evaluated
using the area under the curve (AUC) of a
receiver operating characteristic (ROC) analy-
ses. We used the Hawth’s Tools© extension
within ArcMap to generate the random points
across the study area and spatially enforced a
minimum distance of 10 m between points.
We confirmed our logistic regression results
by using a general linear model (GLM) to
determine habitat use differences between the
2 species within the overlap zone.

To analyze interaction between the 2 spe -
cies, we first constrained our used and avail-
able data to the areas above the lower distribu -
tion line of T. palmeri (within the actual over-
lap zone). We used a single logistic regression
model to compare habitat use for both species.
Where the response variable was use versus
available, species was a covariate factor in the
model, and all interaction terms between spe -
cies and covariates were present (Manly et al.
2002). Random points were generated inde-
pendently for each species.

RESULTS

Transects captured 293 individual chip-
munks, of which 268 were genetically identi-
fied (174 T. palmeri and 94 T. panamintinus).
All T. panamintinus were captured below 2660
m, including 8 above 2400 m (x– = 2328, SD =
188.8), and all T. palmeri were found above
2085 m (x– = 2593, SD = 318). Chipmunks
were captured on 28 of the 34 transects, which
allowed us to estimate the actual distribution
of T. panamintinus and compare it directly to
Lowrey and Longshores’ (in review) T. palmeri

distribution (Fig. 1). We found that T. panamin -
tinus occurrence, compared against all avail-
able habitat, was predicted by pinyon pine, by
increasing hillshade values (increasing expo-
sure to radiation), and by the occurrence of
ponderosa/pinyon pine mixed forest of the
Spring Mountains (overall model: c2 = 163.42,
R2 = 0.66; Table 2). Area under the curve
(AUC) of 0.910 from ROC analysis indicated
a strong ability of the model to discriminate
T. panamintinus points from random points.
Tamias palmeri occurrence was predicted by
slope, aspect, distance to water, fir trees, and
increasing shrub (Ribes spp.) cover (Lowrey
and Longshore in review). Our RSF models
indicated habitat suitability for T. panaminti-
nus extended significantly above the distribu-
tion estimated by location data (Fig. 2). Our
GLM analyses of habitat use between these 2
species confirmed the greater use of fir trees
by T. palmeri (Deacon et al. 1964, Best 1993)
and the greater use of pinyon pine and large
rocks by T. panamintinus (Best et al. 1994;
overall model: F4, 187 = 73.33, P ≤ 0.001;
Table 3). Using data occurring only within the
overlap zone (144 T. palmeri and 64 T. pana -
mintinus), interaction terms indicated that,
relative to T. palmeri, T. panamintinus was
more likely to be near large rocks and south -
erly facing aspects and less likely to be near
fir trees within the pinyon/ponderosa mixed
forest (Table 4).

DISCUSSION

Although we found significant potential
for habitat overlap (Fig. 2), location data indi-
cated that Tamias palmeri and T. panamin -
tinus remain generally well separated within
the Spring Mountains. Compared to random
points not constrained to the overlap zone, T.
panamintinus demonstrated a preference for
pinyon/ponderosa mixed forest habitats at the
upper elevation range of the pinyon forests
(Best et al. 1994). However, when we con-
strained the analyses to the species overlap
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TABLE 2. Habitat variables contributing to Tamias panamintinus occurrence in the Spring Mountains, Nevada.

Habitat variable b SE Wald df P

Hillshadea 0.0262 0.004 42.37 1 <0.000
Pinyon pine forestb 1.968 0.563 4.517 1 0.033
Pinyon/ponderosa mixed forestb 2.856 0.884 10.44 1 0.001
aMeasure of sun radiation intensity as a function of surface angle. Azimuth from 12pm 7/2009.
bCategorical variable: 1 = pinyon, 2 = pinyon/ponderosa. Values relative to the pinyon forest type (reference category).



zone within presence of T. palmeri in the inter -
action analyses, no such preference was found,
and T. panamintinus was more likely found out -
side these mixed ponderosa areas in exclusively
pinyon pine habitat associations. This suggests

potential exclusion of T. panamintinus from areas
with ponderosa and fir trees, a likely food source
for both chipmunk species (Best et al. 1994).

Tamias panamintinus occurs in areas of rela -
tively high solar exposure and, as a result, is
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Fig. 2. Actual distribution extent of both species of chipmunk and habitat models indicating potential distributions for
Tamias panamintinus and T. palmeri and their overlap zone within the Spring Mountains, Nevada, 2009.



able to exploit the pinyon forest on the lower
elevation and southerly exposed areas. In con-
trast, T. palmeri is known to have a narrow
thermoneutral zone (Best 1993) and is likely
physiologically unable to exploit areas of
higher temperatures. Tamias panamintinus
has been found in areas above 3100 m (Best
et al. 1994), suggesting a potentially broad
overlap of the fundamental niche of these
species. However, intensive trapping shows
T. panamintinus is not found above 2600 m
in the Spring Mountains (Deacon et al. 1964,
Lowrey and Longshore in review), and this
elevational limit represents an unexplained
constraint on the species distribution. Based
on changes in habitat use of T. panamintinus
in the presence of T. palmeri, the known
physiological constraints of T. palmeri, and
the lack of occurrence of T. panamintinus at
higher elevations, we speculate that T. pana -
mintinus is excluded from areas within the
thermoneutral zone of T. palmeri by habitat
preference. This may represent a distributional
limit for T. panamintinus, established through
habitat selection as a mechanism by which
the species avoids energetically costly en -
counters with the larger T. palmeri (States
1976, Sharples 1983). If T. panamintinus was
primarily excluded by behavioral interaction,
we would expect T. panamintinus to be found
at higher elevations (Chappell 1978). How-
ever, whether behavior represents an addi-
tional mechanism of separation remains to be
systematically investigated.

The isolation of conifer forests on the Spring
Mountains makes the nonflying species there
particularly susceptible to changes in cli -
mate (Rickart 2001, Ditto and Frey 2007). If
T. panamintinus, already isolated at the lower
elevations by desert and constrained at the
higher elevations by habitat preference and
interspecies interaction, is further subjected
to increasing temperatures and dryer condi-
tions of climate change, the probability of ex -
tinction for this species may increase (Ditto
and Frey 2007).
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TABLE 3. General linear model results showing significantly different habitat use variables within the overlap zone of
Tamias palmeri and Tamias panamintinus. Spring Mountains, Nevada, 2009.

Habitat variable F P Mean difference SE

% fir tree cover 13.51 <0.001 9.3a 2.5
Pinyon-juniper density 9.05 0.003 1.3b 0.4
% sagebrush shrub cover 17.94 <0.001 15.1b 3.4
Large rock (≥ 1 m × 1 m) density 13.64 <0.001 0.7b 0.2
aT. palmeri > T. panamintinus.
bT. panamintinus > T. palmeri.

TABLE 4. Significant interactions between Tamias palmeri (reference category) and Tamias panamintinus within the
Spring Mountains of southern Nevada, 2009.

Habitat variable interactions b SE Wald df P

Speciesa × fir tree density –0.0975 0.0740 4.90 1 0.027
Speciesa × large rock densityb 0.5095 0.2005 6.46 1 0.011
Speciesa × aspectc 2.152 0.4828 19.86 1 <0.0001
aReference category = T. palmeri.
bLarge rocks ≥ 1 m × 1 m.
cCategorical:  0 = southerly facing slopes, 1 = northerly facing slopes (reference category).
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