
In the Sierra Nevada of California, subalpine
meadows are some of the most scenic and eco-

logically important components of the land-
scape. Although they occupy <3% of the range,
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ABSTRACT.—Subalpine meadows are some of the most ecologically important components of mountain landscapes,
and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary
productivity are associated with variability in moisture and temperature will become increasingly important with cur-
rent and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascu-
lar plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots
each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided
independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of
available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evalu-
ate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic
approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to
snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content.
Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water
content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability.
Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-
year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that,
under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric mead-
ows because declines associated with increased temperatures would offset the increases from decreased snow water content.

RESUMEN.—Las praderas subalpinas son algunos de los componentes de mayor importancia ecológica de los paisajes
de montaña, y la productividad primaria es importante para mantener las funciones de la pradera. El comprender de
qué manera se asocian los cambios de la productividad primaria con la variabilidad de la humedad y la temperatura será
cada vez más importante por los cambios climáticos actuales y los que se pronostican. Nuestro objetivo fue describir los
patrones de biomasa de las plantas vasculares vivas sobre el nivel de la tierra y su variabilidad en relación con los facto-
res climáticos. Extrajimos biomasa sobre el nivel de la tierra, en su punto máximo de crecimiento, de cuatro terrenos de
64 m2 cada uno, de praderas áridas, secas y húmedas, anualmente, entre el año 1994 y el año 2000. Las estaciones mete-
orológicas cercanas proporcionaron información sobre las variables independientes del contenido de agua proveniente
de la nieve de primavera, las épocas sin nieve y el grado de deshielo por día para un índice acumulativo de energía dis-
ponible. Reunimos estas variables climáticas en un análisis de covarianza de efectos mixtos para evaluar sus relaciones
con la productividad primaria neta anual sobre el nivel de la tierra (ANPP = annual net primary productivity), y utiliza-
mos un enfoque teórico de la información para evaluar cuál de los modelos candidatos se ajusta mejor. La ANPP de la
pradera árida se relacionó con el contenido de agua de nieve y el grado por día de descongelamiento de manera nega-
tiva. En la pradera seca, la ANPP se relacionó con el contenido de agua de nieve de manera negativa. Las relaciones
entre la ANPP y estas dos covariables no fueron significativas en la pradera húmeda. El incremento del contenido de
agua de nieve puede restringir la ANPP en estas praderas si las condiciones anaeróbicas hacen que se deteriore la activi-
dad microbiana y la disponibilidad de nutrientes. El incremento del grado por día de descongelamiento puede limitar la
ANPP en las praderas áridas haciendo que la humedad del suelo disminuya de manera prematura. La gran variación de
la ANPP en la pradera húmeda en el transcurso del año restringió la sensibilidad a las variables climáticas. Estas relacio-
nes sugieren que, bajo las condiciones más cálidas y más secas que se pronostican, la ANPP se incrementará en las pra-
deras secas, pero se mantendrá sin cambios en las praderas áridas porque las disminuciones asociadas con el aumento de
la temperatura compensarían el contenido de agua de nieve que registró una disminución.
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subalpine meadows provide essential ecosys-
tem structure and functions. These include
biogeochemical cycling, hydrologic functions
(e.g., flood attenuation), maintenance of biodi-
versity, sediment retention, carbon sequestra-
tion, wildlife forage production, and habitat
structure (Smith et al. 1995, Hruby 2009,
Morton and Pereyra 2010). Meadows in the
Sierra Nevada are receiving increased atten-
tion both for the ecosystem functions they
provide and for the socioeconomic values re -
lated to their proper use (e.g., aesthetics,
domestic animal grazing; Roche et al. 2012).

Aboveground net primary productivity
(ANPP) is one important measure of biological
system performance and a provider of critical
ecosystem services. ANPP is the engine for
converting light, water, and nutrients into
organic soils that cycle nutrients and moderate
the movement of soil water through the sys-
tem. Aboveground growth provides the struc-
ture and composition that characterizes verte-
brate and invertebrate forage and breeding
habitat (Morton and Pereyra 2010, Holmquist
et al. 2011). Patterns of ANPP likely underesti-
mate total net primary production given high
root : shoot ratios. In similar systems, below-
ground productivity has outpaced aboveground
growth (Chapin et al. 1993, Fisk et al. 1998,
Hobbie and Chapin 1998), but logistical con-
straints prevented us from measuring below-
ground production or water table depth.

Understanding how changes in primary pro -
ductivity are associated with variability in
moisture and temperature will become increas -
ingly important with current and anticipated
changes in climate variability. Forecasts for the
21st century under greenhouse gas emission
scenarios are for higher temperatures and
reduced snowpack. Under the lowest emission
scenario of the Intergovernmental Panel on
Climate Change (IPCC), the B1 scenario, 1
April snow water content is projected to de -
cline by 34% between 2000 m and 3000 m ele-
vation in the Sierra Nevada, and mean sum-
mer temperature is projected to increase 1.2
°C by the middle of the century (2020–2049;
Hayhoe et al. 2004). By late in the century
(2070–2099), snowpack in the Sierra Nevada is
projected to decline by 30%–90%. These pro-
jections are consistent with projections for
mountainous areas throughout the western
United States (Mote et al. 2005, Maurer et al.
2007, Barnett et al. 2008).

The effects of climate variability vary
among meadow types. Changes in mesic and
xeric meadow productivity differ in response
to increased N availability, which results from
temperature-mediated increases in N minerali -
zation (Bowman et al. 1995), and the response
is greater in colder environments (Rustad et
al. 2001). Hydric meadows can be expected to
be less sensitive to changes in mean annual
moisture input than xeric meadows (Hsu et al.
2012).

We examined ANPP for 7 years within 3
subalpine meadows in Yosemite National
Park in the central Sierra Nevada of Califor-
nia with differing moisture regimes and
species assemblages. Our objective was to
describe patterns in aboveground live vascu-
lar plant biomass and the relationship of that
biomass to climatic variability. We hypothe-
size that current-year cumulative growing
season warmth, growing season length, and
current-year total precipitation will be signifi -
cant predictors of ANPP, but the relative
importance and possibly the direction of
these relationships will vary among the xeric,
mesic, and hydric meadows.

METHODS

Study Area

The study system consisted of 3 meadows
with differing moisture regimes and species
assemblages. Ratliff (1982) defined 21 vegeta-
tive series occurring in montane and sub-
alpine meadows in the Sierra Nevada on the
basis of vegetation composition. The present
work focused on 3 of the most common series
arrayed among 3 moisture regimes in mead-
ows of Yosemite National Park (Fig. 1).

Yosemite National Park lies in a Mediter-
ranean-type climate region with warm, dry
summers and cool to cold, moist winters. The
mean minimum temperature in January at
Tuolumne Meadows, the middle elevation
study site (2620 m elevation), is –12.7 °C, and
the mean maximum in July is 21.3 °C (WRCC
2011). Precipitation falls predominantly in the
form of snow and is concentrated in the winter
months from October through March. Average
annual precipitation is 755 mm at Tuolumne
Meadows (minimum during the study = 599
mm in 1994 [79% of average], maximum dur-
ing the study = 1168 mm in 1995 [155% of
average]).
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Our xeric site is characterized by the short-
hair sedge (Carex filifolia Nutt. var. erostrata
Kük. [synonym Carex exserta Mack.]) series,
which dominates on open, rocky, south- and
west-facing slopes and flats between 2600 m
and 3500 m elevation. Substrates are typically

sandy, gravelly loams on the upper margins of
meadows or just beyond the zone of seasonal
soil saturation (NatureServe 2011). Soils are
strongly acidic, with pH about 5.1 (Ratliff
1982). Vegetation is typically sparse cover of
fine foliage over a sandy substrate (Fig. 2a).
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Fig. 1. Study sites consisted of 3 meadows ranging in elevation from 2280 to 3100 m within Yosemite National Park,
central Sierra Nevada, California. Sources of weather data were California State Department of Water Resources
weather stations at Dana Meadow (DAN) for the xeric meadow, Tuolumne Meadows (TUM) for the mesic meadow, and
Gin Flat (GIN) for the hydric meadow.



Foliar cover averages 50%, with shorthair
sedge accounting for 72% of vegetative cover.
Species richness is low (Ratliff 1982), and only
20 plant species occurred within the four 64-
m2 plots sampled in the current study. Com-
mon associates of shorthair sedge in our plots
included Solidago multiradiata Aiton, Micran-
thes aprica (Greene) Small, Poa stebbinsii
Soreng, Rumex paucifolius Nutt., and Anten-
naria media Greene. Our xeric site was
located at 3100 m in the Gaylor Lakes basin
near Tioga Pass (37°54�30� N, 119°17�4� W)
(Klikoff 1965, Cole et al. 2004).

Our mesic site is characterized by the
Muir’s reed grass (Calamagrostis muiriana
B.L. Wilson & Sami Gray [synonym C. brew-
eri]) series, which occurs on very gentle lower
slopes and basin floors to slopes between
2440 m and 3170 m elevation (NatureServe
2011). Substrates are typically sandy to silt
loams that are seasonally saturated and usu-
ally have perennial subsurface moisture. Soils
are acidic (pH 5.0) and typically have <10%
organic matter content (Ratliff 1982). Even
though the mesic site is dominated by short
(<15 cm) tufted grasses, particularly Muir’s
reed grass (45% of vegetative cover) (Fig. 2b),
species richness is relatively high, with 40
plant species occurring in the four 64-m2

plots in the current study. The common asso-
ciates we observed in Muir’s reed grass plots
were Danthonia intermedia Vasey ssp. inter-

media, Oreostemma alpigenum (Torr. & A.
Gray) Greene var. andersonii (A. Gray) G.L.
Nesom, Vaccinium cespitosum Michx., Gen-
tianopsis holopetala (A. Gray) H.H. Iltis, Sene -
cio scorzonella Greene, Viola adunca Sm. ssp.
adunca, Trifolium monanthum A. Gray ssp.
monanthum, and Carex subnigricans Stacey.
Our mesic site was located at 2600 m near
Delaney Creek in Tuolumne Meadows (37°52�
57� N, 119°23�1� W).

Our hydric site is characterized by the
tufted hair grass (Deschampsia cespitosa (L.) P.
Beauv. ssp. cespitosa) series, which forms dense
stands with 60%–90% cover (Fig. 2c). Tufted
hair grass occurs on basin floors and benches
between 1830 m and 3200 m elevation. Stands
occupy seasonally flooded to saturated sandy
to silty loams and mucks. Soils are acidic and
typically have low organic matter content
(Ratliff 1982). This series is species rich, with
42 plant species occurring in the three 64-m2

plots sampled. Common associates of tufted
hair grass included Bistorta bistortoides (Pursh)
Small, Carex luzulina Olney, Carex abrupta
Mack., Muhlenbergia filiformis (S. Watson)
Rydb., Symphyotrichum spathulatum (Lindl.)
G.L. Nesom var. spathulatum, Eleocharis quin-
queflora (Hartmann) O. Schwarz, and Hyperi -
cum anagalloides Cham. & Schltdl. Our hydric
site was located at 2280 m adjacent to Harden
Lake and approximately 4.8 km north of White
Wolf (37°53�43�N, 119°40�44�W).
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Fig. 2. The vegetation of (a) xeric meadow (shorthair sedge [Carex filifolia var. erostrata] series), (b) mesic meadow
(Muir’s reed grass [Calamagrostis muiriana] series), and (c) hydric meadow (tufted hair grass [Deschampsia cespitosa]
series) sampled for aboveground net primary productivity.



Aboveground Net Primary Productivity

We established four 8 × 8-m plots in the
xeric meadow, 4 plots in the mesic meadow,
and 3 plots in the hydric meadow. The mini-
mum distance between plots within each
meadow was 32 m. No domestic animal graz-
ing occurred in the meadows during the study
or for several decades prior; wildlife had
access to plots, but there was no sign of
wildlife grazing during the study. We har-
vested live aboveground biomass from 10 ran-
domly located 0.125-m2 (35.35 × 35.35-cm)
subplots within each plot during each year
from 1994 to 2000. We marked plots and
mapped subplots precisely to avoid repeated
clipping in the same subplots in subsequent
years. The procedure for estimating biomass
consisted of clipping vegetation to a height of
approximately 1 cm above the ground surface,
separating live biomass from litter and stand-
ing dead biomass, drying samples at 60 °C to a
constant weight, and recording weights to the
nearest 0.1 g. We timed collections each year
within each meadow to coincide with peak
biomass following flowering and prior to
senescence. No live aboveground stems over-
winter in these meadows, and herbivory and
decomposition are relatively low. Thus, we
consider peak aboveground plant biomass to
be a close proxy for ANPP.

Climatic Data

We obtained daily temperature (°C) and
snow water content (mm) data from the Cali-
fornia Data Exchange Center (CDWR 2011)
for California State Department of Water
Resources weather stations located closest to
sampling sites. For the xeric site, we used the
Dana Meadows station 2.5 km southeast; for
the mesic site, we used the Tuolumne Mead-
ows station 3.3 km southeast; and for the
hydric site, we used the Gin Flat station 16.5
km southwest. Weather stations were within
12–130 m elevation of, within about 45° aspect
of, and similar in steepness (most were level)
and slope position to sampling sites so that
topographic influences were similar.

We represented annual climate variables
with combinations of precipitation (1 April
snow water content for the current year
[Apr1SWCcy], 1 April snow water content for
the previous year [Apr1SWCpy]) and tempera-
ture (thawing degree days of the current year
from snowmelt to harvest [TDDs–h], thawing

degree days of the previous year [snowmelt to
end of growing season, TDDpy]). The 1 April
snow water content represents potential soil
moisture inputs during the majority of the
growing season. Thawing degree days is a
cumulative index of the energy available for
melting snow or growing plants (Walker et al.
1994). We calculated TDD from daily tempera -
tures as the sum of mean daily temperatures
for all days when the mean temperature was
above 0 °C. We represented growing season
length with snow-free date (SFD) expressed
as Julian date beginning with 1 January,
because SFD has the greatest influence on the
length of time between initiation of meadow
plant growth in the spring and plant senes-
cence at the end of the season (Billings and
Bliss 1959, Galen and Stanton 1993).

Statistical Analysis

We expected that snow water content
(Apr1SWCcy, Apr1SWCpy), growing season
length (represented by SFD), and growing
season warmth (TDDs–h, TDDpy) would have
varying influence on ANPP in the meadows.
Therefore, we assembled a set of mixed effects
analysis of covariance (ANCOVA) models
based on hypotheses about how climatic fac-
tors affect ANPP at the plot level (Table 2).
Then we used Akaike’s information criterion
adjusted for small sample size (AICc) to com-
pare the quality of fit among candidate mod-
els. We selected the best among the hypothe-
sized models based on the lowest AICc value,
particularly when all other models had AICc
difference (ΔAICc) >2 (Burnham and Ander-
son 2002). Because we expected meadow type
(Type) to determine the overall magnitude of
aboveground plant growth (Cole et al. 2004),
we included Type alone as a categorical vari-
able in the null model identified as xeric,
mesic, or hydric meadow. We included avail-
able climatic variables, listed above, as fixed
effects to explain additional systematic varia-
tions, and we treated mean ANPP (g m–2) at
the plot level as our sampling unit for analysis.

We modeled 77 observations of ANPP (11
plots for 7 years) on a natural-log scale due to
heteroscedastic distribution of residuals based
on a global model that included all fixed ef -
fects, year and plot as random categorical
effects, and all 2-way interactions between
meadow type and other variables in order to
allow climatic effects to differ among the 3
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meadows. Prior to comparisons among hypothe -
sized models and a null model without cli-
matic effects, we analyzed the effects of plot
and year nested within meadow type to ac -
count for correlations among temporally and
spatially repeated measurements (i.e., same
plot at different years or plots nested in the
same meadow within a year). We determined
whether the correlations were modeled best
by categorizing random effects based on plots,
years, both, or neither. We used PROC MIXED
in SAS 9.2 for all analyses and report AICc and
Akaike weights as relative weights of evidence
supporting the different models (Littell et al.
1996, SAS Institute, Inc. 2007). We used
restricted and regular maximum likelihood
techniques (REML and ML) to perform the
initial comparison of random effects and the
final comparison of covariates, respectively,
and we present final estimates using REML
(Zuur et al. 2009). To quantify model fit, we
calculated R2 values as the proportion of
ANPP variation explained by the model (i.e.,
with climatic covariates) as compared to the
null model that is based on only meadow type
and random plot and year effects. Specifically, 

R2 = (SSE0 – SSEm)/SSE0,

where SSE0 and SSEm are the sum of squared
residual errors from the null and climate mod-
els, respectively.

Using the model with the greatest support
(i.e. smallest AICc), we estimated the covariate
relationships with ANPP based on each model
coefficient, b, which represents change in mean
ANPP, on the natural-log scale, per unit in -
crease in the covariate. We calculated the per-
cent change in estimated mean ANPP (natu -
ral-log scale) per 100 units covariate increase
(e.g., 100 mm increase in snow water content
or 100 °C increase in thawing degree days) by
using the formula exp (100b) – 100%.

RESULTS

Mean ANPP increased from xeric to hydric
sites, paralleling gradients of soil moisture (from
dry to wet) and elevation (from high to low).
The 7-year mean ANPP was 77 g m–2 (SE
5.4) for the xeric site, 213 g m–2 (SE 26.6)
for the mesic site, and 361 g m–2 (SE 22.9) for
the hydric site (Table 1). The 7-year mean
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TABLE 1. Aboveground net primary productivity (ANPP) of xeric, mesic, and hydric meadows within Yosemite
National Park, California. SWCcy = 1 April snow water content for the current year; SWCpy = 1 April snow water con-
tent for the previous year; SFD = snow-free date; TDD = thawing degree days = sum of the mean daily temperature
for all days with temperatures above 0 °C; TDDs–h = thawing degree days from snowmelt to date of harvest of above-
ground biomass; TDDpy = thawing degree days for the previous year from snowmelt to end of growing season.

ANPP SWCcy SWCpy TDDs–h TDDpy
Meadow type Year (g · m–2) (mm) (mm) SFD (°C) (°C)

Xeric (Carex filifolia var. 1994 77.0 404 950 145 1462 1262
erostrata series) 1995 58.0 1156 404 192 429 1909

1996 72.2 863 1156 157 1059 524
1997 66.5 935 863 152 404 2016
1998 77.6 1029 935 188 487 803
1999 95.3 714 1029 163 451 637
2000 96.6 647 714 151 411 785

Mean 77.6 821 864 164 672 1134
Mesic (Calamagrostis 1994 368.9 259 823 114 991 825

muiriana series) 1995 164.8 847 259 173 949 1299
1996 193.7 573 847 134 853 949
1997 199.5 643 573 131 808 1174
1998 165.7 887 643 169 720 1123
1999 198.0 543 887 141 812 859
2000 202.2 469 543 130 854 1050

Mean 213.3 603 654 142 855 1040
Hydric (Deschampsia 1994 445.9 424 1155 134 1621 1324

cespitosa ssp. cespi- 1995 282.3 1155 424 175 1510 1723
tosa series) 1996 388.2 594 1155 136 1685 1205

1997 420.2 676 594 127 1671 1769
1998 313.3 1024 676 178 1426 1772
1999 316.1 646 1024 144 1344 1224
2000 363.7 451 646 131 1579 1494

Mean 361.4 710 811 146 1548 1502



Apr1SWC was 821 mm (SE 95) for the xeric
site, 603 mm (SE 82) for the mesic site, and
710 mm (SE 105) for the hydric site. TDD
varied among years and meadows with a mean
at the xeric site (672 degree days, SE 158) less
than half that of the hydric site (1548 degree
days, SE 48). The later mean SFD at the xeric
site (13 June [+–7 days] vs. 22 May for the
mesic site and 26 May for the hydric site)
reflects the meadow’s high elevation. The
greater Apr1SWC in the higher-elevation xeric
meadow is probably a function of lower TDD
values delaying snowmelt relative to the other
meadows.

Interannual variation in ANPP was greater
at the mesic site (CV 34%) than at the xeric
site (CV 19%) or the hydric site (CV 17%), but
within-year variation was greatest in the
hydric and least in the xeric meadow (Fig. 3).
The Apr1SWC for the xeric site ranged from
404 mm in 1994 to 1156 mm in 1995 (CV
32%), a nearly 3-fold difference. The SFD var-
ied by as much as 59 days (CV 16%) at the
mesic site and 47 days (CV 12%) at the xeric
site.

Patterns in the response of ANPP to annual
weather patterns were generally consistent,
with lower ANPP levels in wetter years (higher
Apr1SWC) and higher ANPP levels in drier
years (lower Apr1SWC) (Table 1). At the xeric
site, ANPP was generally lowest in the 2

wettest years of 1995 and 1998 and highest in
the second and third driest years of 1999 and
2000. ANPP was lowest at the mesic site in
the wet test years of 1995 and 1998 but did not
vary greatly after the first year. ANPP was
greatest at the hydric site in the drier years of
1994, 1996, and 2000 and was lowest in the
wetter years of 1995 and 1998.

Models with random effects for plot and
year, nested within meadow type, fit the data
as well as or better than models without one
or both random effects (ΔAICc > 2), and these
random effects were included in all subse-
quent comparisons of fixed effects. The data
most strongly support the model containing
meadow type, Apr1SWCcy, TDDs–h, and in -
teractions of Type * Apr1SWCcy and Type *
TDDs–h. This model has over 40 times the
support of the second-best model containing
SFD instead of TDDs–h (ratio of Akaike
weights: 0.964 ÷ 0.023 = 41.9; Table 2). This
model also explains substantially more varia-
tion, compared with the null model, than the
second-best model (R2 = 0.525 vs. 0.330;
Table 2). The remaining models, including the
null model of no climatic effects, have consid-
erably less support. The best models did not
include previous-year measures of the climatic
variables.

Applying the Apr1SWCcy and TDDs–h
model, we estimated ANPP using the equation
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Fig. 3. Fitted values –+1 SE (shaded band) overlaid against actual data –+1 SE (line graph with vertical bars) for above-

ground net primary productivity (ANPP) of subalpine meadows in Yosemite National Park, California, 1994–2000.



ln(ANPP) = a + b1 × TDDs–h + b2 × Apr1SWCcy,

where the coefficients a, b1, and b2 have sepa-
rate values by meadow (Table 3). TDDs–h was
negatively associated with ANPP in the xeric
meadow but was not significantly associated
with ANPP in the mesic and hydric mead -
ows, although the nonsignificant relationships
trended in a positive direction. The average
change in ANPP for the xeric meadow was
estimated at 3% per 100 TDDs–h increase.
Although ANPP increased in mesic and hydric
meadows at an estimated 6% per 100 TDDs–h
increase, these associations were not signifi-
cant (90% confidence intervals overlapped
zero; Table 3). There was a significant and
similarly strong negative association of SWCcy
with ANPP on the xeric and mesic sites. Mean
ANPP decreased at an estimated rate of 7%
(90% CI: 3%–12%) and 9% (90% CI: 5%–14%)
per 100 mm increase in snow water content
for xeric and mesic sites, respectively, whereas

the estimated change for the hydric site was
only half as large and not significantly differ-
ent than zero.

DISCUSSION

Our ANPP estimates are comparable in
mag nitude and variability to other values from
the Sierra Nevada for the same meadow types
(Klikoff 1965, Ratliff 1985). Annual ANPP var-
ied according to spring snow water content
and seasonal temperatures, and these effects
varied by meadow type. Lower snow water con -
tent was associated with increased ANPP in
the xeric and mesic meadows but not the hyd -
ric meadow. As expected, the hydric meadow
was less sensitive to changes in mean annual
moisture input than the drier meadow, al -
though the large intra-annual variation in ANPP
contributed to the lack of significant relation-
ships with climatic variables. Under wetter
spring conditions, ANPP may be limited by
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TABLE 2. Analysis of covariance models for aboveground net primary productivity (ANPP) of mountain meadows
within Yosemite National Park, California, 1994–2000, with corresponding –2 log likelihood, number of parameters (K,
including intercept, plot, and variance parameters), corrected Akaike’s information criterion (AICc) score, differences
among AICc scores (ΔAICc), and Akaike weights (w). ANCOVA contains random effects, namely random plot and year
effects nested within meadow type. Vertical bar denotes that interaction and main effects are inclusive. Models are
ranked by ΔAICc, which indicates the difference between each model and the best model (lowest AICc denotes rank 1).
R2 values represent proportion of variation explained by the model (i.e., with weather covariates) when compared to the
null model that is based on meadow type and random plot effects only.

Rank Model –2 log L K AICc ΔAICc w R2

1 Type | Apr1SWCcy + Type | TDDs–h –55.83 12 –26.96 0.00 0.964 0.525
2 Type | Apr1SWCcy + Type | SFD –48.40 12 –19.52 7.44 0.023 0.330
3 Type | SFD + Type | TDDs–h –46.69 12 –17.82 9.14 0.010 0.276
4 Null model (Type effect only) –26.73 6 –13.53 13.43 0.001 0.000
5 Type | Apr1SWCpy + Type | TDDpy –42.32 12 –13.44 13.52 0.001 0.165

TABLE 3. Estimates, standard errors (SE), and 90% confidence limits (CLs) for the coefficients a, b1, and b2 in the
model ln(ANPP) = a + b1×TDDs–h + b2×Apr1SWCcy, corresponding to the Intercept, Apr1SWCcy, and TDDs–h
effects, respectively, for each of 3 meadows. Estimates of 100b are displayed for Apr1SWCcy and TDDs–h to express the
change in mean ANPP, on the natural-log scale, per 100 units of covariate increase (i.e., 100 mm increase in snow water
content or 100 °C increase in thawing degree days). The estimated percent change in mean ANPP per 100 units of
covariate increase is related to the model coefficient as exp(100b) – 100%.

Model coefficient (100b) Percent change (%)
_______________________________ ___________________________

Variable Meadow type Estimate (SE) 90% CLs Estimate (SE) 90% CLs

Intercept Xeric 5.17 (0.29) 4.65, 5.68 — —
Mesic 5.41 (0.66) 4.23, 6.58 — —
Hydric 5.12 (0.79) 3.72, 6.50 — —

TDDs–h effect (per Xeric –0.030 (0.015) –0.058, –0.003 –3.0 (1.5) –5.6, –0.3
100 °C increase) Mesic 0.059 (0.065) –0.057, 0.174 6.0 (6.9) –5.5, 19.0

Hydric 0.063 (0.046) –0.018, 0.144 6.5 (4.9) –1.8, 15.4
Apr1SWCcy effect (per Xeric –0.077 (0.025) –0.122, –0.032 –7.4 (2.3) –11.5, –3.1

100 mm increase) Mesic –0.098 (0.027) –0.146, –0.049 –9.3 (2.5) –13.6, –4.8
Hydric –0.032 (0.021) –0.069, 0.006 –3.1 (2.1) –6.7, 0.6



anaerobic conditions that limit microbial activ-
ity and availability of soil nutrients (Schuur
and Matson 2001). The negative association of
warmer temperatures and ANPP at the xeric
site suggests that increased energy, resulting
in higher evaporation rates, shortens the dura-
tion of sufficient soil moisture. These patterns
are consistent with studies showing increased
ANPP with increased temperature in other
subalpine to alpine meadow systems (Scott
and Billings 1964) and arctic tundra (Hollister
et al. 2005, Epstein et al. 2008), as well as
warming experiments that stimulated nutrient
availability (Rustad et al. 2001).

Our results did not support the inclusion
of climate variables for the previous year.
Walker et al. (1994) found that ANPP was
most closely related to previous-year precipi-
tation in dry and moist alpine meadows in the
Colorado Rocky Mountains, but also found
that in wet meadows, the current-year soil
moisture, snow-free date, and current-season
precipitation were more closely related to
ANPP. However, their measures of precipita-
tion were for the growing season and were
not comparable to spring snow water content.
Also, although the path analysis results of
Walker et al. (1994) were significant, previ-
ous-year precipitation explained only 25% and
33% of the variation in ANPP for the moist
and dry meadows, respectively.

Our results suggest that snow water con-
tent and degree days are independent contribu -
tors to ANPP in these meadows. Potential
responses to climate inputs might be additive,
as when snow water amounts and degree day
values both increase or decrease ANPP (mesic
and hydric meadows), or counteract when
ANPP responses to snow water inputs are
reversed by responses to degree day inputs
(xeric meadows). For example, conditions in
1994 were similar to predicted average condi-
tions under conservative climate change esti-
mates (Emissions Scenario B1 for comparable
elevations in Hayhoe et al. 2004). In that year,
the Apr1SWC was 53%–68% of the long-term
mean (available SWC record is 25 years),
TDD was 16% greater than the long-term
mean, and the SFD was 1–3 weeks earlier
than the long-term mean. Under these drier
and warmer conditions, the corresponding
ANPP was 73% greater than the 7-year mean
at the mesic meadow and 23% greater at the
hydric meadow (positive ANPP responses to

warmer and drier). However, the ANPP in the
xeric meadow did not differ from the long-
term mean because the expected increase in
ANPP with warmer temperatures was coun-
terbalanced by the expected decrease in ANPP
under the drier conditions. These relation-
ships suggest that, under projected warmer
and drier conditions, ANPP will increase in
mesic meadows but remain unchanged in xeric
meadows because declines associated with in -
creased temperatures would offset the increases
from decreased snow water content.
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