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INTRODUCTION

The use of quantitative or mathematical models as tools in wildlife conserva-

tion has a rich history, dating back to the birth of conservation biology as a

distinct branch of science (Gilpin and Soulé, 1986; Soule, 1985). Researchers

working within sub-disciplines of conservation science—population biology,

genetics, community ecology, landscape ecology—make extensive use of
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mathematical models for bridging ecological theory and empirical data sets

(Alvarez-Buylla et al., 1996; Brook et al., 2000; Lamberson et al., 1992; Mac

Nally, 2000; Morris and Doak, 2002; Wennergren et al., 1995). This has cer-

tainly been the case for research focused on the conservation of sea otters

where mathematical models have played a central role in many advances of

our understanding of sea otters and their ecosystems. However, before delving

into examples of the use of models in sea otter conservation, it may be helpful

to take a step back to explain what I mean by the term “model,” since this

term may convey different things to different people, and indeed there are

many different kinds of models that are used in many different ways.

Within the scientific disciplines of ecology and conservation biology, a

model is first and foremost an analytical tool used to achieve a specific aim

(Hilborn and Mangel, 1997). According to the Merriam-Webster’s dictio-

nary, a model is defined as “a description or analogy used to help visualize

something (such as an atom) that cannot be directly observed” or “a system

of postulates, data, and inferences presented as a mathematical description of

an entity or state of affairs.” Together these two definitions encompass the

key features of most mathematical models used by conservation biologists.

Fundamentally, models are conceptual or mathematical abstractions, stylized

representations, or simplifications of reality that are meant to capture the

most important elements or dynamics of a phenomenon of interest, while

stripping away extraneous details. The distinction between models and

“hypotheses” is worth noting here, as they are closely related but not synony-

mous (Levins, 1966). A scientific hypothesis is a proposition or unproved

theory about some phenomenon of interest, tentatively accepted to explain

certain facts or observations, or to provide a basis for further investigation.

A good hypothesis can be verified or falsified by experiments, while a

model cannot really be verified because all models are false by definition

(since models are intentional simplifications or characterizations of reality).

However, a hypothesis may be represented or described by one or more

mathematical models, which may be used as part of the hypothesis testing

process, or for generating new hypotheses (Hilborn and Mangel, 1997).

But that still doesn’t answer the question of why models are necessary at

all. In practice, scientists use models as tools to achieve a number of differ-

ent objectives, including (1) to formulate a simplified statistical or quantita-

tive description of a phenomenon; (2) to gain or improve a mechanistic

understanding of a phenomenon; (3) to act as conceptual tools for generating

new hypotheses; (4) to evaluate the feasibility of alternate explanations or

hypotheses about the cause of an observed event (e.g., a population decline);

(5) to make predictions about the future, by synthesizing the data in hand

about a situation, or (6) to provide a systematic framework for the decision-

making process (Maynard-Smith, 1978). In this last case, a model can pro-

vide a means for evaluating the potential effects or implications of various

kinds of decisions, as well as evaluating which data sets are adequate and
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which need to be improved for better decision making. So long as their lim-

itations are clearly recognized, models can provide a scientist with powerful

mathematical tools to help guide intuition about how various processes inter-

act, evaluate testable hypotheses, generate key predictions, suggest appropri-

ate experiments, and provide novel insights or new ways of thinking about a

problem (Caswell, 1988).

The effective conservation of sea otters, and most other species, requires

that scientists solve problems across a wide range of topics, from behavior

and physiology to complex population dynamics, genetics, disease ecology,

food-web interactions and physical/biological oceanography. These are com-

plicated subjects, and the data sets collected by researchers in each subject

area are vast and complex in their own right. Models provide one of the key

tools for simplifying and integrating all these data, allowing scientists to test

hypotheses, elucidate the underlying mechanisms of a particular problem,

and make sound decisions. As computing power increases and new analytical

techniques such as Bayesian approaches become more readily available, it is

inevitable that models will become even more valuable for solving conserva-

tion challenges (Clark and Gelfand, 2006). In the following sections, I will

discuss several branches of conservation science in which sea otter research-

ers have used mathematical models to aid in their research. For each subject

area, I will explain some of the key research questions, provide a few exam-

ples of how models have been used to help answer those questions, and then

highlight promising areas for future and ongoing work in sea otter conserva-

tion. I will end by exploring some of the general lessons that can be drawn

from these examples, focusing on points that may be useful for wildlife con-

servation more broadly.

MODELS OF BEHAVIOR

Animal behavior may seem at first blush to be a rather esoteric subject in the

context of wildlife conservation, as the term “behavioral science” often con-

jures up images of lab-coated scientists watching rats running through mazes.

However, applied studies of animal behavior have actually played a vital role

in animal conservation, mainly because knowledge of how animals behave in

different environments is often necessary to inform management decisions. To

provide just a few examples relevant to sea otters: (1) studies of foraging

behavior and diet choices can provide important insights as to the role of food

resources in regulating population abundance at a particular location; (2) infor-

mation on individual movement behavior is vital for determining the habitat

needs for a threatened population, and may also provide clues about exposure

to human-caused threats such as harvests, oil spills, or pollution; and (3) an

understanding of social behavior and reproductive strategies can be informa-

tive for interpreting why and how populations grow and expand the way they

do, and can shed light on the factors contributing to declining or threatened

The Use of Quantitative Models in Sea Otter Conservation Chapter | 10 259



populations. Quantitative models have been—and will continue to be—useful

tools for exploring and understanding all these themes.

Sea otters are uniquely amenable to studies of foraging behavior and diet,

due to a number of aspects of their behavior and biology. Because they feed

exclusively on benthic invertebrates in shallow nearshore coastal waters

(most feeding dives are made to depths of less than 40 m) and because they

bring all their food to the surface to consume while lying on their backs

(Figure 10.1), they are unique among all marine mammals (and perhaps

among all large carnivores) in that it is possible for an observer equipped

with a high-powered telescope to directly observe, identify, and record all

prey items as they are consumed. There is a rich tradition of biologists capi-

talizing on this unusual behavior, with the result that there is now more

known about the foraging behavior and diet of sea otters than almost any

other carnivore (see, e.g., Estes et al., 1982; Garshelis et al., 1986; Laidre

and Jameson, 2006; Ostfeld, 1982; Watt et al., 2000). This wealth of infor-

mation has been used to test hypotheses associated with some of the central

theories of ecology, such as optimal diet choice, and the effect of competi-

tion for food on the range of different prey types consumed by predators

(often referred to by ecologists as “niche diversity”). The intersection of the-

oretical models with empirical data on sea otter diets and feeding behavior

FIGURE 10.1 Sea otters are unique among marine mammals in that they bring all captured

prey to the surface to handle and consume, and they do this while lying on their backs. This

behavior, in combination with their nearshore distribution, makes them ideal subjects for studies

of feeding behavior. Equipped with powerful telescopes, biologists are able to record each item

of prey that sea otters capture and consume (such as this kelp crab, captured by a female sea

otter near Monterey, CA), as well as the time it takes to locate and process those prey, and then

use these data to estimate diet composition and energy consumption rates. (Used by Permission

of Nicole LaRoche.)
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has revealed some unexpected but fascinating patterns, and it has become

clear that sea otter foraging behavior holds clues to solving many challenges

of sea otter conservation.

Models of optimal diet choice (see Box 10.1) have been applied to sea

otter populations, resulting in a number of specific predictions, as described

by Estes et al. (1981). When sea otters first begin to colonize a new habitat,

Box 10.1 Primer on Models of Foraging Behavior and Diet Choice

Some of the most fundamental questions of ecology concern predator�prey

interactions, and in particular (1) why predators choose to prey on some species

but not others, (2) how predators affect the abundance of their prey populations,

(3) whether there are predictable ways in which predators adjust their behavior

and diet diversity in response to reductions in abundance of their preferred prey

(which may be caused in part by their own predation), and (4) whether the

dynamics described in questions 1�3 may set into motion a broader suite of

changes in the larger food web. Questions 1�3 have been explored by ecologists

within a set of mathematical models together referred to as “foraging theory.” In

brief, these models adopt a cost-benefit approach to predicting the foraging deci-

sions of predators, similar to the models of human consumer behavior used by

economists (and indeed, fundamental economic models and foraging theory

models utilize the same mathematical and conceptual framework). Unlike eco-

nomic models, where consumers are predicted to make decisions so as to mini-

mize monetary costs while maximizing their material benefits, the currency of

many foraging models is food energy, or calories. This makes sense because

energy represents a scarce but critically important resource for wild animals:

they require energy to grow, keep warm, move through their environment, hunt

for food, and reproduce and raise their young. Energy-based models are pre-

mised on the idea that, all else being equal, predators will select prey species

and utilize prey “patches” in the environment in such a way so as to minimize

the energetic “expenditures” of feeding while maximizing their energy intake

(Schoener, 1971).

One of the building blocks of foraging theory is the diet choice model

(Charnov, 1976; Emlen, 1966). This model, while fairly simplistic, provides the

basis for more elaborate models and illustrates many of the basic principles of

foraging theory, so it is worth taking the time to examine and understand the

model mathematically. In Eq. (10.1), E represents total consumed food energy

and T represents time, so that E/T is the rate of energy intake (e.g., the number of

kcal the predator consumes per minute), calculated as

E=T 5
λ1e1P1 1λ2e2P2 1 . . .λnenPn

111λ1h1P1 1λ2h2P2 1 . . .λnhnPn
ð10:1Þ

Other symbols in Eq. (10.1) include λi, representing the relative abundance of

a particular type of prey and thus the rate with which it is encountered by the

predator (note that the subscript numbers in Eq. (10.1) are used to keep track of

(Continued )
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Box 10.1 (Continued)

the parameter values for different types of prey, i5 1, 2,. . ., n, where n is the

number of potential prey types); ei, representing the net energy content of each

prey type; hi, representing the time it takes to acquire, handle, and consume

each prey type; and Pi, the probability that a predator will attack and consume

items of each type of prey when encountered. If we assume that prey 1 is the

most profitable and thus highest ranked prey (its ratio of net energy content to

handling time, ei/hi, is higher than for all other prey types), it makes intuitive

sense that a predator should always attack it when encountered (P15 1). But

what about the other prey types: should the predator include them in its diet, or

ignore them when encountered and continue searching? We assume that preda-

tors will tend to make decisions so as to maximize their overall rate of energy

gain, all else being equal (since this will allow them to maximize their lifetime

reproductive output). Mathematically, this is achieved by adjusting the attack

probability values (Pi) for each prey type until we find the maximum value of

E/T. It turns out that the overall rate of energy intake (E/T) is maximized if the

predator makes its decision to attack or ignore each prey type based on the rela-

tive abundance of all higher-ranked prey types. Specifically, if we assume that

prey 2 is ranked just below prey 1 in terms of profitability, the predator should

include prey 2 in its diet (P25 1) if the following inequality holds:

e2=h2 $
λ1e1

111λ1h1
ð10:2Þ

Otherwise, the predator should ignore items of prey 2 when encountered

(P250). A similar equation can be used to predict whether or not prey 3 will be

included, and so on. Some algebra reveals that Eq. (10.2) will be satisfied—and

prey 2 included in the diet—if the abundance of prey 1 (λ1) is sufficiently low.

Likewise Eq. (10.2) will not hold—and prey 2 will be excluded from the diet—if

the abundance of prey 1 (λ1) is sufficiently high. However, you might notice that

the abundance of prey 2 (λ2) does not appear in Eq. (10.2): this means that the

abundance of prey 2 is itself predicted to be irrelevant to the predator’s decision

to include it in the diet! This prediction may seem surprising, and indeed it was

quite controversial when first proposed; however, years of data from experiments

and wild predator populations have largely supported these predictions. When

highly preferred prey is abundant in the environment, predators tend to rely pri-

marily on these profitable prey types and ignore less profitable prey, resulting in

low diet diversity. As the relative abundance of the preferred prey decreases, pre-

dators add additional lower-ranked prey types to their diet, resulting in more

diverse diets. What would cause the relative abundance of preferred prey to

decline? This can occur when the predator population is capable of depleting its

own prey populations, thereby reducing prey density. But even if the absolute

prey density remains the same, a decrease in relative per capita abundance of

prey (i.e., number of items per individual predator) can occur if there is an

increase in the predator population density: this is because the same number of

prey items per unit area are now competed for by a larger number of predators

(there are more diners at the table). And of course prey populations can vary

over time in response to factors independent of predation.
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they are expected to limit their diet primarily to highly profitable prey types

(e.g., abalone and large red sea urchins in kelp habitats, or large Dungeness

crabs and butter clams in soft sediment habitats) that allow a high rate of

energy intake. As the sea otter population grows, and per capita availability

of these preferred prey types goes down, it is expected that the rate of energy

intake will decline and diet diversity will go up (as less profitable prey are

sequentially added to the diet). Ostfield (1982) tested these predictions by

studying the diets of sea otters as they first recolonized pristine habitat near

Santa Cruz, CA. He found that, consistent with model predictions, sea otters

initially preyed mostly on large red sea urchins, the prey species with the

highest energy content to handling time ratio. These highly profitable prey

were quickly depleted, after which sea otters increased their usage of the

next most profitable prey (abalone and cancer crabs) and eventually began to

add lower-ranked prey (kelp crabs and smaller clams) to their diet. The

resulting pattern was an increase in diet diversity and a decrease in energy

intake rates over time. A similar pattern was found by Estes et al. (1981)

near Monterey, CA. Moreover, going back to the same area of California

three decades later, Tinker et al. (2012) found that diet diversity is even

greater, with a high frequency of low profitability prey types in the average

sea otter diet. In soft sediment habitats, similar but more subtle patterns have

been reported: in southeast Alaska, Kvitek and Oliver (1992) and Weitzman

(2013), found that sea otters preyed mostly on large butter clams, mussels, and

urchins when those energy-rich prey were sufficiently abundant; however, as

otters became more abundant and depleted these profitable prey, their energy

intake rates declined and they began to add less profitable prey to their diets

(diet switching was less dramatic than in kelp habitats, possibly because soft

sediment clam communities, in some cases, provide a more sustainable prey

base over the long term). Thus the predictions of the basic diet model appear

to hold up well for sea otters, at least when examined at the population

level—but more on this below.

At this point we should pause and note that in the above discussion of

changes in sea otter diets and energy intake rates over time, we have

assumed that it is possible to obtain unbiased estimates of sea otter diet com-

position and intake rates. For most free-ranging carnivores, such a require-

ment represents a very tall order; in fact, there are few systems for which

this is even remotely possible. Sea otters are, fortunately, an exception,

although there are still some substantial challenges involved in obtaining

unbiased estimates of diet composition, and even greater challenges to over-

come in estimating energy intake rates. The reason that estimating these sta-

tistics is so challenging is not due to paucity of data—indeed, with a little

practice and effort it is possible to amass vast quantities of observational

data on sea otter feeding behavior and prey capture rates. Rather, it is

because the data records collected are quite often incomplete, and there tends

to be a non-random pattern to the bits of data that are missing—for example,
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prey that are very small, or consumed quickly, are more frequently

unidentified by the observer, as are prey that are captured and consumed far

from shore—and this non-random nature of missing data introduces the

potential for biased estimates of diet. Overcoming this potential bias has

been made possible by a very different type of model, something called

(intriguingly) a “Monte Carlo simulation model.”

The term “Monte Carlo simulation” is derived, as the name suggests,

from the Monte Carlo Casino, and like the games of chance played at the

casino, Monte Carlo simulations take advantage of the aggregate statistical

properties of many random events. Monte Carlo models are especially useful

for simulating complex systems, where there is substantial uncertainty and

interactions between model inputs, making more traditional “deterministic”

models inappropriate (a deterministic model is illustrated by Eq. (10.1) in

Box 10.1). The general approach of the Monte Carlo method involves defin-

ing the range and “probability distribution” of possible values for a series of

input statistics, generating large numbers of random samples from these

probability distributions, performing a series of computations on each set of

random input values (the computations correspond to the presumed dynamics

of the system being modeled), and then aggregating and describing the

results of these computations. Now, unless you are very comfortable with

probability and statistics, the above explanation may not make that much

sense to you, so let’s consider a simplified model of sea otter foraging to bet-

ter illustrate the Monte Carlo method. Imagine we are observing sea otters

feeding at an island in the Aleutian Archipelago where sea urchins make up

almost all the prey. Let’s say that we decide to record the number of urchins

captured by sea otters during each of 1000 feeding dives. We also record the

size of the urchins captured on each dive (it is possible to estimate the size

of sea otter prey by comparing each item to the width of the feeding sea

otter’s paw, which is approximately 45 mm). However, we notice that the

size of the urchins depends on the number of items captured: sea otters tend

to either capture a few large urchins or many small urchins on each dive

(this is because prey patches on the bottom tend to be made up of many

urchins of a similar size). Luckily, because we kept track of both number of

urchins AND size of urchins on each dive, we can account for the interaction

between prey number and prey size in our model, as we’ll see shortly.

Finally, we record the duration (in seconds) of each dive cycle, which

includes the time underwater finding prey plus the subsequent time at the

surface handling and consuming the prey. Tallying up the results of our

recorded feeding dives, we can plot histograms of the three types of data

(Figure 10.2). If we have recorded enough data, these histograms can be

easily translated into “probability distributions,” which are useful mathe-

matical formulas that tell us the likelihood of observing a particular value

of a given statistic in the future. For example, if we find that the size of

the urchins captured on feeding dives with three prey items is well
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described by a normal probability distribution having mean of 38 mm

and standard deviation of 13 mm, then we know that the probability that

the urchins captured on the next three-urchin dive will have a size of

50�55 mm is 8.2% (Figure 10.2A). The normal distribution is just one
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FIGURE 10.2 Frequency distributions and fitted probability density functions for several vari-

ables (and one estimated parameter) recorded during observations of sea otter foraging in the

Aleutian Islands, AK. (A) Blue bars show a frequency histogram of the size (test diameter) of

sea urchins captured on feeding dives, and the red line shows a normal probability density func-

tion that was fit to these data using maximum likelihood methods. (B) Blue bars show a fre-

quency histogram of the number of sea urchins captured per feeding dive, and the red line shows

a negative-binomial probability density function that was fit to these data using maximum likeli-

hood methods. (C) Blue bars show a frequency histogram of dive cycle durations (i.e., the time

spent under water finding prey plus the subsequent time at surface spent handling and consuming

that prey), and the red line shows a log-normal probability density function that was fit to these

data using maximum likelihood methods. (D) Blue bars show a frequency histogram of estimates

of the rate of energy gain, calculated from the variables shown in panels A�C using Eq. (10.3)

in the text. The red line shows a log-normal probability density function that was fit to these

estimated values using maximum likelihood methods.
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type of probability distribution (although the one that is familiar to most

people), but there are other distributions as well, and it turns out that the

number of prey items per dive is better described by the “negative bino-

mial distribution” (Figure 10.2B) while the duration of the dive cycle is

better described by the “log-normal” distribution (Figure 10.2C). Next we

use a random number generator to create a sample of new values drawn at

random from each of the above-described probability distributions, and we

repeat this until we have 10,000 sets of random values for our three statis-

tics (number of urchins/dive, size of urchins per dive given the number of

items captured, and the duration of the dive cycle). For each set of ran-

domly generated values, we perform the following calculations to calculate

the rate of energy intake (E/T), or the number of kcal consumed per minute

in this “simulated future dive”:

E=T5
n3 0:3963 0:0005ðsjnÞ2:9035

d
ð10:3Þ

In Eq. (10.3), the symbols used are n for the number of items captured, s for

urchin size (the expression sjn simply indicates that the value of s is depen-

dent on n because there is a different probability distribution of s for each

value of n) and d for the duration of the dive cycle (in minutes). Note that

the calculations performed in Eq. (10.3) allow urchin energy content to be

estimated from urchin diameter: this is possible because we have previously

measured the relationship between urchin diameter and urchin biomass (in

grams), as well as the number of kilocalories per gram of urchin biomass.

Equation (10.3) is solved for each of the 10,000 sets of random values, and the

results are tabulated in a histogram (Figure 10.2D). Thus by using this basic

Monte Carlo model, we are able to estimate that sea otters consume, on aver-

age, approximately 10.4 kcal/min of time spent feeding at our Aleutian Island.

Just as importantly, we also have an idea of how precise our estimate is (or

how much uncertainty there is associated with this mean value, as represented

by how “spread out” the Monte Carlo estimates are in Figure 10.2D).

The above example is of course highly simplified, but illustrates the key

concepts of how the Monte Carlo method has been applied to sea otter forag-

ing data sets. In reality there are many more characteristics of feeding beha-

viors and prey that are recorded, and many more interactions among these

statistics that have to be accounted for in the calculations. The power of the

Monte Carlo method in these cases is that (a) all the interactions between

recorded variables can be accounted for in the calculations, no matter how

complex, and (b) the algorithm can properly incorporate the additional uncer-

tainty and biases caused by missing data points. For example, prey species is

less likely to be recorded for small items that are handled very fast: we can

account for this by incorporating the context-specific probability that prey spe-

cies is unidentified within our Monte Carlo simulation. On a given iteration
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of the simulation, if prey species is drawn as “unidentified,” we then ran-

domly assign a value by drawing from the list all recorded prey species for

that area (or individual otter) having the appropriate dive attributes (e.g., if

our randomly generated dive has a short surface interval and small prey size,

then we draw randomly from all recorded prey that were captured on dives

with short surface intervals and small prey size). In this way, the more data

points that are missing the more uncertainty there is in our resulting estimates

of diet composition and energy gain, and we can remove the biases that are

inherent in the raw data sets due to non-randomness of missing data.

Dean et al. (2002) used a Monte Carlo model to estimate diet and prey

consumption rates at two sites within Prince William Sound: Knight Island,

which had been heavily impacted by the Exxon Valdez oil spill (EVOS), and

Montague Island, which had escaped oiling (Chapter 4). They found that

prey consumption rates were significantly higher at Knight Island, and thus

were able to reject the hypothesis that food limitation was preventing further

population recovery of otters at Knight Island. A similar comparison

was made by Tinker et al. (2008a, 2012) in California: comparing long-

established, high-density sea otter populations in central California to a

recently established, low-density population at San Nicolas Island, they

found that diet diversity was high and rate of energy intake was very low in

the high-density central California sites, in contrast to the low-density San

Nicolas site where diet diversity was low (and diets were dominated by

energy-rich red urchins) and the rate of energy intake was high. The exam-

ples mentioned above demonstrate that using Monte Carlo models to analyze

foraging data can provide valuable insights into the role of food resources in

limiting growth of sea otter populations. In fact, if we apply this Monte

Carlo model to the combined database of foraging data collected by many

researchers at sites across the sea otter’s range, from California to Alaska to

the Commander Islands in Russia, we find a consistent pattern in terms of

how foraging success (energy intake per minute) varies as a function of sea

otter population density and population growth rate (Figure 10.3). This is

important for two reasons: first, it tells us that in most cases, the relative per-

capita abundance of energy-rich prey is ultimately the factor that determines

sea otter population growth and equilibrium abundance. Second, it means that

it is important to understand the status of a population with respect to foraging

success because it can highlight situations where something other than food

abundance is limiting a population. In Figure 10.3, for example, we notice that

two populations fall outside of the expected relationship between foraging suc-

cess and population density and growth rate: sea otters in the central Aleutian

Islands and Alaska Peninsula are currently at low density (having declined by

more than 80% in the last two decades), and yet have a high rate of energy

intake. If food abundance were the only important factor then we would expect

them to have a very high rate of growth, but instead we find populations that

are stable or declining. We can therefore surmise that some factor other than
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food abundance is limiting abundance in the Aleutians and Alaska Peninsula.

At this time, the preponderance of evidence points toward elevated mortality

due to predation by killer whales (Estes et al., 1998; Chapters 4 and 6).

Similar logic can be applied to other situations as well, for example to deter-

mine places in California where land-based pollution may be affecting sea otter

health and reducing population growth even though food resources may be rel-

atively abundant (Jessup et al., 2007).

The models and patterns discussed above are useful for understanding the

factors that affect sea otters at the population level—that is, they focus on an

“average” individual within the population. However, a study by Estes et al.
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FIGURE 10.3 Estimated rate of energy intake while feeding for 13 sea otter populations, ranging

from the Russian Commander Islands to southern California (see Figure 10.2 and text for description

of Monte Carlo model used to estimate energy gain from observational feeding data). Each popula-

tion has been classified into one of three categories organized along two independent axes: (1) rate

of population growth (slow, moderate, rapid) and (2) population density (low, medium, high). In

general, rate of energy gain tends to decrease as populations vary from low-density, rapidly growing

populations to high-density, slowly growing (or stable) populations. Two sites that deviate from this

axis are Adak Island and the Alaska Peninsula during the mid-2000s, where populations had been

reduced to low density by factors other than resource abundance.
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(2003) demonstrated that the population average diet was not necessarily

reflective of individual diets: to the contrary, individual sea otters tended to

specialize on just a few prey types, and it was the differences between these

specialized individual diets that gave rise to diverse diets at the population

level. While this finding at first appeared to contradict the predictions of

optimal diet theory, further investigations have shown that this is not the

case. Specifically, theoretical predictions that individual prey choices should

tend to converge upon an “optimal diet” are based on the assumption that

individuals within a population are more or less similar with respect to forag-

ing ability, or are “phenotypically similar.” From a distance, one sea otter

may look much like another, but in fact if one carefully measures the behav-

ior and prey-specific capture and handling efficiency of tagged sea otters, it

turns out that individuals differ considerably. A sea otter that specializes on

feeding on turban snails, for example, can handle 42% more snails per hour

than can a sea otter that specializes on some other prey type (Tinker et al.,

2012). This variability in foraging skills appears to represent the effect of

learned traits in sea otters, rather than genetic variation (Estes et al., 2003).

Tinker et al. (2009) developed a stochastic dynamic model (a type of behav-

ioral model that can incorporate learning: Mangel and Clark, 1988) that

showed that the ability to learn foraging skills through extensive practice, or

to lose those skills through lack of practice, would lead to the maintenance

of diet specialization within a population, and moreover that the ability of

females to pass on some of these skills to their offspring (a form of cultural

transmission, also observed in sea otters) would further increase the degree

of diet specialization observed. Another analysis of these data used network

theory (the developing science of analytical approaches for studying net-

works, or graphical representations of the pattern of relationships between

discreet objects) to examine how resource abundance affected the degree of

specialization (Tinker et al., 2012). In this analysis, individual resource use

was modeled as a bipartite network in which two sets of nodes, one repre-

senting individual consumers and the other representing their prey resources,

were connected by links representing utilization of each prey by each

individual. It was found that network modularity (the diversification of indi-

vidual sea otters into specialized “dietary modules”) increased greatly as pre-

ferred food resources became less abundant. This finding has important

implications for sea otter conservation, because many of the pollutants and

disease-causing parasites that affect sea otter health and survival are acquired

by sea otters through their diet. Indeed, in an analysis of the factors that

potentially increased the risk of infection in sea otters from two protozoan

parasites that can cause lethal brain infections, it was found that a sea otter’s

diet specialization was one of the most important predictive factors (Johnson

et al., 2009). Thus understanding and measuring individual diet specializa-

tion in sea otters provided a useful tool for elucidating the mechanisms and

pathways of disease exposure.
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Models of foraging behavior are perhaps the best examples of behavioral

models for sea otters in the published literature; however, other types of

behavior can also be investigated using models, such as time-activity bud-

gets, habitat selection patterns, and movement behavior. Describing and

quantifying the movement of animals in marine environments can be chal-

lenging, but technological advances in bio-logging instruments have greatly

improved our ability to regularly and reliably geo-locate individuals and

investigate how they move within their environment. As these types of data

have become more common, a number of different models have been

brought to bear to understand the factors that underlie the observed patterns

and answer questions such as “what habitats are critical for this population?”

or “how far will a typical individual move within a specified period of

time?” The former question has been investigated with models of individual

home range and habitat use (an individual’s home range is the spatial extent

or outside boundary comprising all or most of that animal’s movements over

some standardized period of time, such as a year). Home range models fre-

quently make use of probabilistic utilization distributions, calculated from

repeated observations of an animal’s locations over time (see Borger et al.,

2008). The utilization distribution is a probability density surface represent-

ing the likelihood of finding the individual at any particular point in space.

Non-parametric kernel density models have been used to calculate home

range utilization distributions and home range boundaries (corresponding to

the area encompassing 95% of the kernel probability density function) for

sea otters in California (Tinker et al., 2008a) and in Washington (Laidre

et al., 2009). In the latter example, individual home ranges were estimated as

kernel probability distributions along the one-dimensional axis represented

by the coast. Future work will need to focus on estimating two-dimensional

utilization distributions that account for the particular habitat restrictions of

this coastal marine species.

Related to the concept of home range and habitat use are questions about

individual movements and dispersal behavior: that is, given an animal’s loca-

tion right now, how far away is it likely to have moved by some future time

(e.g., by next year)? The answer to this question is critical for developing

models of population growth and range expansions (see “Population

Dynamics,” below), and can be represented by probability distributions of

“net linear displacement,” also called “dispersal kernels.” Empirically

derived dispersal kernels have been calculated by fitting exponential proba-

bility distributions to data on the movements of radio-tagged sea otters in

California (Ralls et al., 1996; Tinker et al., 2008b). Expected dispersal

distances can also be predicted using “random walk” models, which are

a family of Lagrangian, individual-based models of animal movements

(Turchin, 1998). These models simulate animal movements as a series of

steps whose direction and distance are either random (random walk model),

random but correlated (correlated random walk model), or random and
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correlated and biased in some way (biased correlated random walk model),

such as toward the center of a home range (Borger et al., 2008). A correlated

random walk model fit to data on the movements of radio-tagged sea otters

in California demonstrated a strong bias in the observed versus expected net

linear displacement over time, suggesting that individuals exhibited a strong

site fidelity and were less likely than expected to move very far from the

center of their home range (Kage, 2004; Tinker et al., 2006b). Future models

will build on this approach to develop biased correlated random walk models

that incorporate multiple centers of use (i.e., more than one home range cen-

ter) and the unique bathymetric habitat restrictions of sea otters.

MODELS OF POPULATION DYNAMICS

There is perhaps no other subject in wildlife conservation to which the use of

models is more central than the analysis of wildlife populations, or population

biology. The reasons for this are fairly straightforward: although the concept

of a population is simple enough (the assemblage of a specific type of organ-

ism living within a defined area at a given time), it is very difficult to say

useful things about how that population is currently behaving, or will

behave in the future. Actually measuring the characteristics of a population—

its abundance, its spatial extent, and how individuals of the population are dis-

tributed over the landscape—is challenging enough for wide-ranging animals

such as sea otters, but actually being able to interpret how those characteristics

are changing over time, and why, is far more challenging. To accomplish the

latter, we need to understand all the processes that cause a population to

change in abundance and distribution: taken to the extreme, this would

entail being able to predict the movements, reproduction, and survival (and

time of death) for each member of the population! Obviously that is not

practical or even possible for any wildlife population; however, it is possi-

ble to do the next best thing: to use mathematical equations that correspond

to simplified cartoons of how typical individuals within the population will

move, produce offspring, live, and die. In other words, we can describe

aggregate properties of the population using a model. Of course we obvi-

ously have to sacrifice an awful lot of detail in so doing, but it turns out

that even simple models can be quite useful both for understanding how a

population came to have the abundance and distribution that we currently

observe, and (more importantly for conservation) for forecasting how those

characteristics might change in the future, under different management

scenarios.

Relatively simple, unstructured population models can provide a useful

way of interpreting the patterns of growth seen in many recovering sea otter

populations. Exponential models (see Box 10.2) form the basic tool for inter-

preting short-term rates of change—for example, estimates of r derived from

trend data collected by wildlife surveys can be used to assess current
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Box 10.2 Primer on Models of Population Dynamics

The simplest type of model for a population can be summarized by a single

number, N, the number of individuals in the population. Or to be more precise,

Nt, where the subscript “t” indicates that we are interested in the number of

organisms in the population at a particular point in time. The simplest type of

model that is used to describe the dynamics of Nt is something called a differen-

tial equation, which describes how Nt changes over time (as represented by the

expression “dN/dt”). Specifically, the change in population size that can be

expected over a small increment of time is calculated as

dN

dt
5 rNt ð10:4Þ

Equation (10.4) is pretty easy to interpret: the rate of change in population size is

equal to the product of the current population size and r, which is known vari-

ously as the instantaneous growth rate or the intrinsic rate of population growth.

Biologically speaking, r represents per-capita contributions to population growth,

which is simply the difference between births and deaths for an average individ-

ual in the population, r5b�d. If the number of births per individual per unit

time (b) exceeds the number of deaths per individual per unit time (d), r will be

positive and the population will grow; if deaths exceed births, r will be negative

and the population will shrink. We can also re-express Eq. (10.4) in a different

form to predict the population size at any time in the future:

Nt 5N0 3 ert ð10:5Þ

In Eq. (10.5), N0 represents the initial population size, and ert means to take the

exponential function of the product of r and t (where t is the number of time

steps into the future). Note that the exponential function of a number means to

raise the natural logarithm base e, which is approximately 2.718, to the power

of that number. Equation (10.5) seems simple enough, but there is a slight prob-

lem: this simple model would suggest that any population with a positive value

of r, however small, will eventually grow to massive size. For example, try plug-

ging in an initial population size of 100 and an instantaneous growth rate of

r5 0.2 (a pretty typical maximum growth rate for a large mammal). Assuming

our time step is a year, you will find that after just 100 years our population

would number about 48,517,000,000! Thus the exponential population growth

described by Eqs. (10.4)�(10.5) may be useful for predicting dynamics over short

time intervals, but clearly we need to add a little bit more realism to this model

before it is useful for longer periods. Biologically speaking, we have to account

for the fact that individuals in a population can have negative impacts on other

individuals, frequently referred to as “negative density dependence”; for exam-

ple, they may compete for limited resources, or spread diseases to each other.

We can represent this mathematically by adding a new term, α, representing the

incremental amount by which each new individual added to the population

reduces the rate of births (or increases the chance of death) of every other indi-

vidual in the population. As more and more individuals are added these tiny

(Continued )
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population status and/or population impacts of various perturbations.

Gerrodette (1987) developed a statistical model for gauging the effectiveness

of survey data for estimating r, and demonstrated that a long-term time series

of regular counts can be an extremely powerful means of detecting even sub-

tle changes in growth. Estes (1990) used this approach to analyze time series

from multiple sea otter populations across the North Pacific, including

Amchitka Island (where the population had apparently reached carrying

capacity by the early 1970s), Attu Island (which sea otters had only recently

recolonized), California, and three populations established by translocation,

Washington, British Columbia, and southeast Alaska. The results were

fascinating: populations at Attu, Washington, British Columbia, and south-

east Alaska were all growing at remarkably high rates, with estimated values

r of 0.17�0.25, in contrast to a slower growth rate of 0.05 in California.

Estes (1990) also employed a life table model derived by Cole (1954) to esti-

mate the theoretical maximum rate of growth (rmax) for an age-structured

population, given a specified age at first reproduction (a5 2�4 years for sea

Box 10.2 (Continued)

incremental effects add up and reduce the per capita birth rate (or increase the

death rate), so that the realized rate of population growth will slow over time:

dN

dt
5 rNt ð12αNt Þ ð10:6Þ

Equation (10.6), the logistic growth equation, is one of the simplest but most

powerful ways of modeling the long-term dynamics of population growth. With

a bit of algebra one can solve Eq. (10.6) to find the value of Nt at which the rate

of change5 0, that is, the abundance at which growth will stop and the popula-

tion will stabilize. It turns out this happens when Nt5 1/α, so we can define the

value 1/α as the equilibrium abundance of Nt, also known as the carrying capac-

ity or “K” (thus K5 1/α5 the point at which births and deaths cancel each other

out). Another way to express Eq. (10.6) is as a “discrete equation,” meaning that

time is represented as discrete steps (e.g., 1-year steps) rather than as a continu-

ous process:

Nt11 5Nte
rð12ðNt=K ÞÞ ð10:7Þ

Equation (10.7) tells us that the abundance of the population next year can be

calculated from three pieces of information: (a) the abundance this year, (b) the

intrinsic rate of growth, r, and (c) the carrying capacity, K. When population

abundance is very low, the fraction N/K is approximately 0 and so drops out of

the model, with the result that Eq. (10.7) becomes effectively identical to

Eq. (10.5), the exponential growth model. This implies that the per capita growth

rate of the population will be at its maximum, r, when N is very small, and

indeed in this context it is common to refer to the parameter r as “rmax,” the max-

imum possible rate of growth.
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otters), age of last reproduction (w5 12�18 years for sea otters), female

birth rate (b5 0.43�0.49 female pups per year), and assuming near-perfect

survival of females up until the age of last reproduction:

15 e2rmax 1 be2rmaxa 2 be2rmaxðw11Þ ð10:8Þ

By solving Eq. (10.8) with the parameter values listed above, it can be

shown that the theoretical value of rmax for sea otters is somewhere

between 0.20 and 0.25. Thus the recovering population at Attu and the

translocated populations at Washington, British Columbia, and southeast

Alaska were found to be increasing at (or near to) the theoretical rmax,

while the recovering population in California was growing at only one

quarter of that rate, at best. This result has been taken to suggest that

the California population has experienced a chronically higher mortality

rate than northern populations, although an alternate explanation for the

difference may be related to the narrow, almost one-dimensional configura-

tion of habitat in California, which, when combined with the high degree

of spatial structure of the population (Tinker et al., 2008b), results in more

constrained range expansion and thus slower population growth (this is the

case because a larger proportion of the population more quickly becomes

resource limited than northern populations where there is a two-

dimensional matrix of available habitat for range expansion).

The other key parameter of the logistic model shown in Eq. (10.7) is of

course K, the carrying capacity. Estes (1990) used a qualitative assessment

of the time series at Amchitka to conclude that the population at that island

had reached a carrying capacity of between 5245 and 6597 otters by the

early 1970s. A similar qualitative assessment was made by Laidre et al.

(2001) to identify areas in central California assumed to be at or near carry-

ing capacity. Laidre and colleagues then used a spatial habitat model, devel-

oped in a geographic information system (GIS), to extrapolate these

equilibrium densities to areas of similar habitat type throughout the rest of

coastal California and thereby estimate a potential total carrying capacity for

southern sea otters (assuming that sea otters were to eventually recolonize all

nearshore habitat between the Oregon border and Mexico). Gregr and col-

leagues (2008) used a similar spatial habitat model to estimate potential car-

rying capacity for sea otters in British Columbia. Coletti (2006) developed

an even more elaborate model for Prince William Sound, using stepwise

logistic regression to describe relationships among behavior, diving activity,

and habitat attributes, including both nearshore and offshore habitat, and

then applied those relationships to predict equilibrium densities throughout

the Sound, and in particular to those areas affected by the EVOS in order to

determine the potential for further post-spill recovery.

All the population models discussed to this point have focused on pre-

dicting changes in population abundance overall, while effectively ignoring
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any details about the animals that make up the population. Often such sim-

plified models are sufficient and appropriate for addressing the questions of

interest. But what if we are interested in learning about a specific segment of

the population, or we want to know about the impacts of a factor that only

affects certain animals (i.e., a disease that primarily affects juveniles or

females). Accounting for this complexity requires a different kind of popula-

tion model, one which explicitly incorporates “population structure,” or dif-

ferences within the population (see Box 10.3).

Box 10.3 Primer on Matrix Models of Structured Populations

The most common type of model used to investigate structured populations is

the projection matrix model (a thorough treatment of this subject is provided by

Caswell, 2001). A projection matrix is a mathematical tool for describing “transi-

tions between states,” and is basically a series of linear equations organized to

simplify algebraic operations such as multiplication. If we were to classify all the

individuals from a population into one of a limited number of “states” (where

states could be defined by sex, age, size, or any other attribute deemed to be

important), then the matrix describes all the ways that individuals of a given state

can transition to (or contribute to) other possible states over the course of a single

time-step (the time-step is usually assumed to be 1 year, but could also be a

month, or a week, or any other appropriate interval). For example, if we decide

that it is important to classify individuals by age, where the possible state values

are juvenile, sub-adult, adult, and old adult, then our matrix will reflect the fact

that it is possible for a juvenile to make a transition to sub-adult simply by

surviving and growing a year older. Conversely an adult cannot grow into a sub-

adult (so this transition will not be allowed in our matrix); however, an adult can

contribute to the juvenile age class by reproducing and successfully rearing an

offspring to become a juvenile. These examples illustrate the three main types of

transition that are described by a projection matrix: growth, survival, and repro-

duction (Figure 10.4A).

The values that are actually stored in the matrix are “per capita transition

rates”: in the case of survival, this corresponds to the probability that a typical

individual of a given state (e.g., age class) will survive from 1 year to the next,

while for reproduction this corresponds to the average number of offspring pro-

duced by a typical individual over the course of 1 year. The value of the matrix

in column j and row i (which we will refer to as aij) represents the annual transi-

tion rate from state j to state i (a population projection matrix is always square,

so both i and j take on values from 1 to the number of different possible states).

If we know the number of individuals in the population assigned to each state

value at the start of this year, we can use matrix multiplication (or matrix projec-

tion) to calculate the expected number of individuals in each state at the start of

next year, and similarly for all future years: this operation is illustrated in

Figure 10.4B. Additional matrix algebraic operations can be used to obtain use-

ful properties of the population such as the asymptotic annual population growth

rate, usually represented by the symbol λ (not to be mistaken with the

(Continued )
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Demographic models of sea otter populations have commonly used age as

the state variable (generally modeling only the females in the population),

although a few models have used both sex and age. Eberhardt (1995) was one

of the first to apply an age-structured demographic model to sea otters, using a

Lotka-Leslie age-structured matrix (see Box 10.3) within a re-sampling

Box 10.3 (Continued)

instantaneous growth rate r discussed previously, but which is related to r by the

equation λ5 er). In Figure 10.4B, λ5 1.018, meaning that a population with

these vital rates will grow at an annual rate of 1.8%. Other advantages include

the ability to determine which state transitions are most responsible for causing

λ to go up or down. This latter property of population matrices, referred to as

sensitivity analysis, is clearly a useful property, because it allows us to identify

the demographic segments of the population that are most important to focus

conservation efforts on if we wish to ensure population recovery.
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FIGURE 10.4 Illustration of population projection matrix methods. (A) Loop diagram showing

the possible life history transitions between each of four demographic “states,” in this case age-

classes (15 juveniles, 25 sub-adults, 35 adults, 45 aged adults), and a matrix formulation of

this same life history. The three types of transition at each time-step include survival and growth

to next age-class (G), survival without growth (P), and contribution to the first age-class via

reproduction (F). In the matrix formulation, a transition from state j at time t to state i at time

t1 1 is entered into row i and column j. (B) The operation of matrix multiplication (also called

matrix projection) is demonstrated, whereby the number of animals in each age-class at time

t1 1 is calculated based on the number of animals in each stage at time t, given the particular

combination of vital rate estimates used to parameterize the matrix model.
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simulation to develop a method for estimating reproductive rates (and associ-

ated variance estimates) that accounted for the fact that sea otters give birth

year round. Eberhardt concluded that the matrix model approach could be

used to evaluate population recovery from events such as the EVOS, and his

model integrated previously published information on sea otter vital rates (e.g.,

Jameson and Johnson, 1993; Siniff and Ralls, 1991) and laid the groundwork

for a number of later matrix models used to analyze sea otter population

dynamics. For example, Estes and colleagues (1998) used a similar projection

matrix model to estimate the number of sea otters that would have to have

been lost to killer whale predation over a 6-year period (1990�1996) to

account for the dramatic decline in sea otter populations that occurred through-

out southwest Alaska. In this case, the model projections were used as part of

a simulation analysis to determine whether it was feasible for killer whale pre-

dation to account for the 70�90% decline in sea otters that occurred over this

period across the Aleutian Archipelago and the Alaskan Peninsula.

Amazingly, the model results indicated that just 3�4 killer whales consuming

3�5 sea otters per day (the number of otters required to meet energetic

requirements of an adult killer whale) would have been sufficient to drive the

observed decline. It is worth noting that the estimates of sea otter vital rates

(age-specific survival and reproduction) used for this feasibility analysis were

taken from the literature, but matrices can also be useful for estimating vital

rates from empirical data sets using standard data fitting techniques.

The use of maximum likelihood or Bayesian methods to fit age-specific

survival rates to empirical data on the ages of either living animals or those

that have died (in many areas it is possible to retrieve dead sea otters when

they wash up on beaches) is one of the most powerful applications of pro-

jection matrices. Although this may sound intimidating if you are unfamil-

iar with data fitting techniques, the concept is actually quite simple, and

can be summed up as follows: a key property of projection matrices is the

ability to calculate the expected proportion of the population that can be

found in each age class, as well as the proportional age distribution of the

animals that die (the “death assemblage”). The precise nature of this output

depends on the survival rate estimates in the matrix itself: tweaking these

values will have the effect of changing the expected proportion of animals

in each age class in both the living population and the death assemblage. If

we were to systematically tweak all the survival rate values (and birth rate

values) in the matrix model, running through the almost infinite set of pos-

sible permutations, we would eventually stumble upon the exact combina-

tion of values that result in the projected age distributions we find in

nature. This may sound like a lot of work for us, but that is essentially what

maximum likelihood and Bayesian analyses do. Udevitz and Ballachey

(1998) developed a novel method for conducting this type of data fitting,

using the ages of both living animals and beach cast carcasses from a popu-

lation where the growth rate was varying over time (the assumption of
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stable growth rates was a limitation of earlier techniques). Monson and

colleagues (2000) used this type of age-structured model to assess whether

there were lingering population effects from the 1989 EVOS. By using

maximum likelihood methods to fit time-varying age-specific survival rates

to age distributions of sea otters found dead on beaches of western Prince

William Sound, Alaska, they found strong support for continued reductions

in survival in the areas impacted by the oil spill. This model was rerun and

elaborated upon 10 years later (Monson et al., 2011), to determine whether

the oil spill effects had dissipated. This updated model indicated a gradual

reduction of the survival effects over time; however, it was also shown that

the oil-affected areas represented a “sink” population, where there was a

net reduction in abundance, but that this was counterbalanced by the

“source population” of unaffected areas, with the net result of slow recov-

ery of the population of western Prince William Sound. A similar methodo-

logical approach was used by Tinker and colleagues (2006a) to examine the

spatial and temporal shifts in demographic rates that were responsible for

the period of decline seen in the California population in the late 1990s.

The California model built on the approach of Udevitz and Ballachey

(1998) and Monson et al. (2000, 2011), fitting survival rates to a time series

of annual census counts as well as age at death data, and incorporating two

sexes and spatial structure into the projection matrix. The results indicated

that the period of decline that occurred between 1995 and 2000 was the

result of decreased survival of sub-adult and prime-age adult females, par-

ticularly in the north and center of the sea otter’s range (Figure 10.5).

Projection matrix models have also been used to answer an even wider

range of applied conservation questions about sea otter populations. For

example, Gerber et al. (2004) used a matrix model to assess the relative con-

tribution of various causes of death to variation in the growth rate of the

California sea otter population. Their sensitivity analysis revealed that infec-

tious disease and emaciation had the greatest impact on population growth

during the period of decline in the late 1990s, although shark bite wounds

and human-caused trauma also had substantial impacts. Another common

application of projection matrices includes the broad category of models

known as “population viability analyses,” or PVA. PVA models are used to

assess the future viability of a given population under specific management

scenarios, or to assess the potential impacts of a new threat or perturbation

on the viability of a population. A PVA was developed by Tinker and col-

leagues for the southwest Alaska sea otter population, and is included as part

of the recovery plan for this population (USFWS, 2010, 2013). As part of

that analysis, trend data from skiff surveys of index sites across the Aleutian

Archipelago were combined with data on vital rates collected during teleme-

try studies at Amchitka, Adak, and Kodiak Islands, and these were used to

estimate mean and variance in per-capita mortality rates in southwest Alaska

over the period of 1992�2007. Simulations were then run to investigate the
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probability of persistence under various scenarios about initial population

size and the nature of predator-induced mortality. The results of these simu-

lations provided guidance on appropriate abundance thresholds for the up-

listing and de-listing criteria (i.e., the abundance at which up-listing from
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FIGURE 10.5 Spatial and temporal variation in sea otter survival rates in California during the

1990s plotted for sub-adult females (A) and adult females (B). The two horizontal axes are time

(in yearly increments, 1992�2000) and geographic location within the range (units are 500 m

increments along the coastline, ranging from Santa Cruz in the north to Pt. Conception in the

south). The vertical axis is the model-estimated annual rate of survival for the indicated life-stage.

(Figure from Tinker et al. (2006a). Used by permission of The Ecological Society of America.)
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“Threatened” to “Endangered” status should be considered, and the abun-

dance at which de-listing from “Threatened” status should be considered).

Another PVA for Alaskan sea otters was developed by Bodkin and

Ballachey (2010), designed to investigate the potential impacts of human

harvests on local sea otter populations in southeast Alaska (Chapter 4). By

parameterizing a matrix-based model with vital rates derived from stable,

slowly growing and rapidly growing populations, and then simulating

harvests of varying magnitudes and sex ratios, Bodkin and Ballachey deter-

mined what levels of take would be sustainable (i.e., would not drive

the population to decline). They found that the level of additional mortality

from harvest that was sustainable varied considerably, from just 0.5%

increased mortality in stable populations with 1:1 harvest sex ratio, up to

27% increased mortality in rapidly growing populations with a 3:1 ratio of

males to females in the harvest. Interestingly, although they found that male-

only mortality maximized annual harvest in stable populations, they also

noted that highly male-biased mortality in all simulations eventually led to

low proportions of males in localized areas, leading to instability in projected

populations over time. This result highlighted the need to account for local-

ized sources of mortality in sea otter PVA models, due to the fact that sea

otter populations tend to be structured at relatively small spatial scales.

The above examples demonstrate that it can be important to include spa-

tial differences in population density and vital rates in conservation models.

Another aspect of spatial dynamics that has been explored using models is

changes in the distribution of sea otter populations. This was the focus of an

analysis by Lubina and Levin (1988), who used a diffusion-based model to

describe the rate with which the sea otter population in California was

spreading northwards and southwards along the coast. This relatively simple

model combines behavior (movement) and population growth, treating popu-

lation spread as a diffusion process, more or less equivalent to the outward

diffusion of a gas cloud released into a vacuum. The diffusion model esti-

mates “invasion speed,” V, or the rate at which the “population front” moves

into unoccupied habitat:

V 5 2ðrmaxDÞ1=2 ð10:9Þ

Equation (10.9) predicts the rate of invasion into new habitat with only

two parameters: rmax and D, the diffusion parameter, which has units of km2

per unit time, and is a property of the relative mobility of individuals within

the population. Specifically, in the case of population diffusion along a one-

dimensional axis (i.e., the California coastline), D can be estimated as one

half of the mean square net displacement per unit time of a typical individual

(the net displacement of an individual is calculated as the straight-line dis-

tance between its location at time t5 0 and its location at time t5 1, and

this is then squared to estimate mean square displacement). The diffusion
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model of Lubina and Levin provides a good first approximation of how sea

otter populations spread into unoccupied habitat, generally matching

observed patterns at large scales although omitting many details. Some of

the important details that the diffusion model does not incorporate include

differences in how sea otters utilize different types of habitat, and the fact

that male and female sea otters, and otters of different ages, tend to have dif-

ferent patterns of habitat use, mobility, and survival rates. Many of these

sources of variation were later included in more elaborate integrodifference

equation models of population spread in California (Krkosek et al., 2007;

Smith et al., 2009; Tinker et al., 2008b). As with the simple diffusion mod-

els, integrodifference equation models are used to estimate the asymptotic

wave speed, the rate at which a population front will advance into unoccu-

pied habitat, based on the mobility and demographic rates of individuals

within the population. Unlike the diffusion models, however, integrodiffer-

ence equations can accommodate differences in the mobility, survival, and/or

reproductive rates between individuals of different ages (or sexes), and also

can handle frequency distributions of individual movement distances that are

not normally distributed (e.g., skewed distributions where a few individuals

move very great distances: Kot et al., 1996; Neubert and Caswell, 2000). By

applying integrodifference equation models to the California sea otter popu-

lation it was found that a skewed distribution of net displacement distances

could explain the accelerating nature of range expansion in the earlier part of

the twentieth century (Krkosek et al., 2007), and that differences between

northern and southern rates of range expansion were potentially explained by

differences in survival rates (Smith et al., 2009). A specific management

application of an integrodifference equation model will be discussed below

in “Applied Conservation Questions.”

MODELS OF COMMUNITY DYNAMICS

Sea otters have long been recognized as keystone predators in nearshore eco-

systems (Estes and Palmisano, 1974), which means that their presence and

abundance in the ecosystem has inordinately strong impacts on the structure

and dynamics of sub-tidal and inter-tidal community assemblages (see

Chapter 2). The substantial ecosystem impacts of sea otters can be attributed

to both direct and indirect effects of their predator�prey interactions with

other species. Note that in ecology, the terms “direct effect” and “indirect

effect” have very specific meanings: a species has a direct effect on another

species if it actually eats (or is eaten by) that species, or otherwise directly

affects the abundance of that species through a non-feeding interaction (e.g.,

parasitism and pollination). A species is said to have an indirect effect on

another species if it affects the abundance of that species without actually eat-

ing (or being eaten by) that species, but the effect is mediated through one or

more other species interactions (e.g., if species A eats species B, and species
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C also eats species B, then species A can affect species C indirectly via its

impacts on species B). Direct and indirect effects can best be pictured using a

food web (Figure 10.6), a graphical representation of the network of feeding

interactions occurring within a specified community of plants and animals.

The direct effects in a food web are represented by the arrows that indicate a

feeding link between two species. Indirect effects are represented as the con-

nections between two species that can be made by following a pathway

through more than one arrow: for example, in Figure 10.6 an indirect effect

between sea otters and coastal fish can be traced through links from sea otters

to sea urchins to kelp to coastal fishes. If one begins to describe all possible

indirect effects in a food web, it quickly becomes apparent that this kind of

interaction network contains a great deal of potential complexity. How, then,

do we begin to predict which interactions will be most important for maintain-

ing stability of the community (or conversely, which interactions are most

likely to de-stabilize the community)? This is exactly the type of question

posed by a community ecologist, and multi-species interaction models have

been used for many years as tools to help answer such questions.

One of the simplest and most well-known multi-species models to be

applied to sea otters is a “trophic cascade” model, consisting of a vertical

Killer whale

Great whales

Harbour seal Steller
sea lion

Oceanic fishes

Sea otters

Bald eagle

Gulls

Starfish

Mussels/
barnacles

Coastal fishes

Sea urchins

Kelp

FIGURE 10.6 Food-web relationships among selected species in the North Pacific Ocean and

southern Bering Sea. The arrows represent feeding linkages for which there are known (solid

lines) or suspected (dashed lines) dynamic interactions. See text for explanations. (Figure from

Estes et al. (2009). Used by permission of the authors.)
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cascade of feeding links across two or more “trophic levels” (e.g., a primary

consumer feeds on a herbivore that feeds on a plant). In most rocky-substrate

habitats across the North Pacific, sea otters tend to prey heavily on sea urch-

ins, a relatively abundant and energy-rich invertebrate, and sea urchins in

turn are one of the most voracious herbivores to consume the various algal

species that make up kelp forests. The quantitative predictions of the three

species trophic cascade model are straightforward and easy to test: when the

primary consumer (sea otters) increases in abundance, we expect to see a

decrease in the herbivore (urchins) and an increase in the primary producer

(kelp), because sea otters have a negative direct effect on urchins and thus a

positive indirect effect on kelp (Estes and Palmisano, 1974). These predic-

tions have been tested repeatedly through “opportunistic experiments” (spe-

cifically, the reintroduction or natural recolonization of sea otters into

unoccupied habitat) in many regions, from Alaska’s Aleutian Islands to

Vancouver Island in British Columbia, with results generally supporting the

model predictions (Estes and Duggins, 1995; Watson and Estes, 2011).

The trophic cascade model can be extended by adding additional levels: for

example, adding a fourth trophic level (a secondary consumer) is predicted

to reduce the abundance of the primary consumer, increase herbivore

abundance, and thus decrease plant biomass. An opportunity to test the pre-

dictions of this model occurred in the early 1990s, when killer whales began

to prey upon sea otters in southwest Alaska (Estes et al., 1998). Consistent

with the model predictions, sea otters declined, sea urchins proliferated, and

kelp forests across the Aleutian Archipelago were dramatically reduced, all

within a period of 5�10 years (Estes et al., 2004).

While the trophic cascade model has been very useful for predicting

changes in kelp forest habitat caused by the addition or loss of sea otters, it

is obviously somewhat limited in scope because it accounts for just a handful

of species. More elaborate food web models, such as the one depicted in

Figure 10.6, are more difficult to interpret in terms of their predictions

because of the vast number of possible indirect effects. In some cases quali-

tative interpretations of model dynamics are possible, such as the review by

Estes et al. (2009) of the cascade of indirect effects that occurred after killer

whale predation reduced sea otter populations across the Aleutian Islands:

this strong direct effect apparently resulted from a dietary shift of certain

mammal-eating killer whales, presumably in response to earlier declines in

their preferred prey of Steller sea lions and harbor seals (Estes et al., 1998,

2009). Indirect effects of the killer whale�sea otter interaction included a two-

to threefold decrease in the growth rates of barnacles and mussels (Duggins

et al., 1989), a 10-fold decrease in abundance of some kelp forest fish such as

greenling (Reisewitz et al., 2006), and a shift in the diet of bald eagles from

largely fish and mammals to largely gulls and other marine birds (Anthony et al.,

2008). These particular indirect effects were interpretable because the mechan-

isms were well understood (Estes et al., 2009); however, because the number of
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potential indirect effects increases geometrically with the number of species in a

food web, qualitative interpretations of more species-rich food web models can

be problematic. There are mathematical tools for analyzing more rigorously the

expected dynamics of multi-species assemblages (Allesina et al., 2008; Dunne,

2006; McCann and Hastings, 1997; McCann et al., 1998; Pascual and Dunne,

2006; Wootton, 2001), although these tools can also become overwhelmed by

complexity and the uncertainty associated with quantifying each direct species

interaction (Novak et al., 2011). One such multi-species model is “Ecopath,”

which traces the flow of energy through a food web using a series of mass-

balance equations that describe the production, consumption, and loss of biomass

for each species in the system at equilibrium (Pauly et al., 2000). An Ecopath

model that included sea otters was assembled for the Prince William Sound eco-

system (Okey and Pauly, 1998); however, that model was focused primarily on

the open-water food-web interactions in order to predict fisheries dynamics, and

so the treatment of sea otters and their invertebrate prey was cursory at best.

SOME EXAMPLES: APPLIED CONSERVATION MODELS

In the history of sea otter conservation there have been a number of particu-

lar challenges for which very specialized models have been designed and

brought to bear. These applied models often incorporate more than one element

of the subjects discussed above (e.g., both behavior and population dynamics) as

well as other subject areas, and were generally designed to address a very spe-

cific question. I will briefly discuss two examples—understanding oil spills and

predicting population spread—to provide a flavor of some of the ways in which

specialized models can be designed to explore and help answer challenging con-

servation questions.

One of the most devastating anthropogenic impacts to sea otters, and to

coastal ecosystems more generally, has been the occurrence of large oil

spills. Perhaps the most well known of these to affect sea otters was the 1989

EVOS. Sea otters are particularly susceptible to coastal oil spills because of

their nearshore distribution, but also because of idiosyncratic aspects of their

biology that make them particularly vulnerable to oil in two ways: (1) they

are dependent upon the integrity of their fur for thermoregulation, and oiling

of their fur compromises its integrity as an insulator (Davis et al., 1988) and

can lead to hypothermia and death (thermal challenges can be exacerbated

by acute poisoning when they groom their fur and incidentally ingest and

inhale oil); and (2) they feed on bottom-dwelling invertebrates in the sub-

tidal and inter-tidal zones, which often require extraction from the substrate

by digging, and this makes them susceptible to direct exposure to and inges-

tion of oil while foraging, potentially leading to chronic health effects. The

first of these impacts tends to manifest itself immediately after an oil spill

and can result in extensive mortality over large areas (Bodkin et al., 2002;

Bodkin and Weltz, 1990; Degange and Lensink, 1990; Garshelis, 1997;
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Williams et al., 1988). The second of these impacts, toxicological effects

from oil ingestion, can continue to affect sea otters for months or years after

the oil spill because oil can remain in the environment in inter-tidal sedi-

ments and sea otters may be repeatedly exposed during foraging (Ballachey

et al., 2002). Using archival time depth recorder data and models to assign

dive types, Bodkin et al. (2012) estimated sea otters foraging in oiled areas

of Prince William Sound were exposed to lingering oil from 2 to 24 times

per year, more than 15 years after the spill. Effects of such exposure can be

difficult to measure and the health effects may be sub-acute and effectively

“invisible,” yet they can still have population-level impacts by reducing sur-

vival. To address this conservation concern, Harwell and colleagues (2010)

developed a risk assessment model to assess the potential for toxicological

harm to sea otters from buried EVOS subsurface oil residues (SSOR). Their

model was an “individually based model,” meaning that they used computer-

based simulations of individual behavior, iterated many times. They incorpo-

rated multiple pathways of potential exposure to SSOR into their model,

including oil that becomes suspended in the water column and is taken up by

filter feeding invertebrates (and thus otters are exposed through diet); otters

are directly exposed to SSOR as they dig pits in the inter-tidal zone to

extract clams and other infaunal prey. To parameterize their model they used

data on sea otter behavior (specifically activity budgets, diet composition,

and feeding dive locations) as well as environmental data on shoreline sub-

strate composition and oil residue levels in different substrate types. They

ran 500,000 simulations of individual foraging otters, estimated exposure

levels to SSOR for each simulated otter, and compared these to chronic tox-

icity reference values approved by the US Environmental Protection Agency.

They concluded that although sea otters continued to be exposed to oil, the

maximum exposure rate would not result in sufficient exposure to cause any

health effects (Harwell et al., 2010). These results suggest that direct expo-

sure to residual oil from EVOS should not be a factor in limiting sea otter

populations in western Prince William Sound. This conclusion was contra-

dicted by the results of Monson et al. (2000, 2011), summarized above in the

discussion of population models, which found evidence for continued demo-

graphic impacts from EVOS. Further complicating the picture are analyses

conducted by Ballachey et al. (2003), which examined the relation of various

blood parameters to survival rates of juveniles in eastern and western Prince

William Sound, and by Miles et al. (2012), which examined relations

between oil exposure and the expression of genes. These authors found that

differences in blood parameters and gene transcription in the area affected

by EVOS were consistent with continued exposure to oil, and also possibly

contributed to the lower survival rates in this group. So how should we pro-

ceed when different models produce contradictory findings? This is perhaps

a good time to bear in mind the famous quote by the late George Edward

Pelham Box: “Essentially, all models are wrong, but some are useful.” None
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of these models should be confused with reality, though all of them seek to

provide useful explorations of some specific aspect of the real world. In this

case there are empirical data which suggest some continued biological expo-

sure to oil (Ballachey et al., 2003), contradicting at least some of the predic-

tions of the risk assessment model developed by Harwell et al., but the

question of actual population-level effects is more complex. Both the

Harwell et al. (2010) model and the Monson et al. (2000, 2011) models

make a number of simplifying assumptions, and these must be examined

closely in order to evaluate the degree of reliability in the results of each

paper. Ultimately, when two models that appear to be founded on reasonable

assumptions produce contradictory results, the safest conclusion is that addi-

tional investigation into the question is warranted.

Despite continued debate over the long-term impacts of EVOS on sea

otters in Prince William Sound, the EVOS has resulted in an enormous

amount of baseline information about the Prince William Sound ecosystem,

as well as the short-term and long-term effects of oil spills on ecosystems in

general (Peterson et al., 2003). Some of this information has been used to

inform conservation efforts aimed at sea otter populations elsewhere, particu-

larly in California. Brody et al. (1996) used data on how EVOS had affected

sea otter survival in Prince William Sound, specifically how those impacts

varied with time and distance from the point of origin of the spill, to parame-

terize a simulation-based risk assessment model for California sea otters.

Their model sought to estimate the population-level impacts of oil spills of

similar magnitude if they should occur at different locations along the

California coast, predicting morality of sea otters as a function of how an oil

slick would disperse along the coast, how many otters it would encounter,

duration of oil-otter encounters, and time since the spill. They found that an

oil spill occurring at the Monterey peninsula could expose some 90% of the

California sea otter population at that time to oil and kill at least 50% of

individual otters (Brody et al., 1996). These model results supported an ear-

lier, somewhat unusual model by VanBlaricom and Jameson (1982), which

took advantage of an accidental lumber spill off central California during the

winter of 1978, and spread to cover most of the sea otter’s distribution within

4 weeks. These authors noted that the movement rates of lumber were very

similar to those of oil slicks observed elsewhere, and their observations indi-

cated that a major oil spill could expose most of the population to oil con-

tamination within a month of a spill. These sobering findings were

considered by the Endangered Species Recovery Team in setting de-listing

criteria for southern sea otters, and in advising the US Fish and Wildlife

Service on Management options (USFWS, 2003).

Management and conservation of wildlife species nearly always demands

that we try to forecast the future based on past events, to gauge how a popu-

lation will respond to some anticipated conservation challenge. The PVA

described above represent one type of forecasting model, one that seeks to
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assess the future viability of a population given a range of known or antici-

pated threats. A more specific management question in California required

a more specialized forecasting model, one that combined information on

population vital rates and individual behavior in order to forecast the future

range expansion of southern sea otters. In particular, as part of the

Environmental Impact Statement on the translocation of southern sea otters

to San Nicolas Island (USFWS, 2012), the US Fish and Wildlife Service

requested a model to forecast the future spatial extent of the sea otter popula-

tion in southern California, and the number of animals projected to be south

of Pt. Conception at various future times. This information was required as

part of the Services’ re-evaluation of the “No Otter Zone” policy that, in the-

ory, would restrict sea otter range expansion south of Pt. Conception. Tinker

and colleagues (2008b) developed a spatially structured integrodifference

equation model with which to produce such a forecast. As discussed above

(see “Population Models”), integrodifference equations can be used to esti-

mate the rate at which a population will “spread” by making use of data on

stage-specific vital rates and mobility. This matrix-based model utilized pre-

viously published estimates of survival and reproductive rates from various

parts of the sea otter distribution (Tinker et al., 2006a) and combined these

with data on individual movement behavior collected from radio telemetry

studies, to predict both the speed with which the population would spread

into habitat south of Pt. Conception, as well as the growth in numbers in this

region. The model was initiated using data from the 2004 census, and pre-

dicted that by 2014 there would be 112 sea otters southeast of Pt.

Conception (95% confidence limits5 692 163) and the southern range limit

would be between Goleta and Carpentaria, California. These forecast esti-

mates were used by Fish and Wildlife to estimate biological and socioeco-

nomic impacts of allowing sea otters to naturally recolonize habitat south of

Pt. Conception (USFWS, 2012), and factored into the decision to end the

“No Otter” zone (Chapter 12).

CONCLUSION

The examples described above (and summarized in Table 10.1) are by no

means an exhaustive review of all models developed by researchers investi-

gating sea otters and their ecosystems; however, they do provide an overview

of the diversity of topics and sea otter studies in which models have played

an important role. At this point it may be useful to take a figurative step

back and evaluate some of the more general lessons that may be gleaned

from these examples and applied to other species and other systems. Models

are an important tool for wildlife conservation, and when one considers the

sea otter models described above, some little pearls of wisdom emerge that

explain why they were possible and often successful, and what we learned

from them.
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1. Long-term data sets are powerful. One of the most rewarding aspects of

working in the world of sea otter conservation is that our predecessors in

this field had the foresight to initiate long-term monitoring programs, and

as a result there is an embarrassment of riches when it comes to long-

term data sets. Models are most useful in conservation if they are based

on a solid understanding of the system in question AND can be parame-

terized with values that reflect something close to the full range of varia-

tion and uncertainty that exists in that system. For example, having

5 years of data on which to base a population growth model is certainly

better than nothing; however, it is unlikely that those 5 years will provide

a full picture of the range of variation in growth rates (i.e., really good

years and really bad years). In contrast, many of the examples discussed

above were based on .30 years of sequential population estimates, and

in many cases time series of similar duration for other components of the

ecosystem (e.g., kelp and urchins). Instinctively we tend to place more

confidence in the projections of models that are built on such long-term

data sets, and for good reason. What if that type of data set is simply not

available for a species of concern? For species in which long-term data

sets simply don’t exist, it is often appropriate to look at closely related

species where data may be more plentiful and use these data sets to

parameterize models. As long as one allows for suitable amounts of

uncertainty (either explicitly in the model, or implicitly in terms of inter-

pretation of results), this approach can be useful for designing conserva-

tion models for data-poor species.

2. Combining multiple data types can be a good thing. Particularly in the

modern age of information theory and Bayesian estimation techniques, it

is very possible and indeed desirable to bring together and integrate mul-

tiple data types, as doing so can make model results more robust and

often provide more insight. For example, estimation of vital rate para-

meters used in the matrix projection models developed for Alaska and

California (Monson et al., 2011; Tinker et al., 2006a) was based on mul-

tiple independent data sets (in the case of the Alaska model, age distribu-

tions of both living and dead animals and survey estimates of population

size; in the case of the California model, age distributions of dead ani-

mals, survey estimates of population size, and mark-recapture data from

tagged animals). Maximum likelihood methods were used to extract far

more information from these combined data sets than could be gained

from any one by itself. The synthesis of diverse data types is indeed one

of the main advantages provided by mechanistic models, in contrast to

more traditional statistical analyses of single data sets, and in many cases

the results that emerge can be surprising and non-intuitive.

3. In complex systems, models can be invaluable for elucidating mechan-

isms. Community models such as those discussed above provide an

excellent illustration of how models can provide insights into complex
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and otherwise intractable systems. In the Aleutian Island example, many

apparently unrelated phenomena had been observed independently:

declines in Steller sea lions and other pinnipeds in the pelagic realm, sea

otter declines in the nearshore zone, reductions in kelp abundance, and

declines in certain fish populations. Because none of these species have

direct interactions with each other, it was a stretch to imagine that they

were all connected; however, a food web model provided the conceptual

and quantitative means of describing the network of indirect effects that

linked them all together. In this sense models provided a feasibility test,

answering the question of how likely or unlikely it was that killer whales

could cause the sea otter decline, or that reductions in sea otters could

lead to the observed changes in kelp and fish abundance. Just as impor-

tantly, models can be critical in understanding and interpreting “emergent

dynamics” of complex systems. Emergent dynamics are, as the name sug-

gests, phenomena that emerge from the complex suite of interactions of

the system as a whole and are not predictable from examining any indi-

vidual part of the system. It is generally not possible to examine a single

pair of interacting species and predict whether impacts of that species’

interaction on the community as a whole will be large or small.

However, a food web model that incorporates multiple species (and thus

includes both direct and indirect effects) can be used to assess emergent

properties such as the relative importance of each pairwise interaction,

and how the loss of any one species will affect the stability and resilience

of the entire community. Although such model predictions obviously need

to be empirically tested, they are nonetheless an important tool in conserva-

tion because they provide insight into when and how a threat to a single

species will propagate throughout the community and have ecosystem-level

impacts.

4. Models designed to answer questions about basic biology can provide

unexpected insights into conservation questions. Some of the sea otter

models described above would not initially seem to be tools for conserva-

tion. For example, models used to understand foraging ecology might

seem interesting from a purely academic standpoint, but are perhaps less

so when it comes to species conservation. And indeed, many models are

initially designed to answer basic questions about organismal biology or

ecology: how does an individual sea otter select prey, how does diet

change as competition for food increases, how far away will a sea otter

move over the course of a year? However, it is well known that effective

conservation strategies are built on a solid understanding of natural history,

and in addition to answering the ecological questions for which they were

designed, such models may also provide unexpected but important insights

into conservation challenges. For example, models designed to investigate

individual foraging decisions (Tinker et al., 2009) and the network structure

of predator�prey interactions at the individual level (Tinker et al., 2008a,
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2012) showed that sea otters in high-density populations exhibited pro-

nounced diet specialization, with individuals falling into one of a number

of distinct diet modules. Making use of this information, Johnson et al.

(2009) developed an epidemiological model to investigate whether diet

specialization was a risk factor for exposure to land-based disease patho-

gens. The results of this model showed that certain prey specializations,

including a diet high in marine turban snails, greatly increased risk of

infection with protozoan parasites. Thus models initially developed to

understand foraging behavior unexpectedly led to information that is help-

ing conservation biologists determine how disease-causing parasites on

land are finding their way into coastal marine food webs.

As computing capabilities become ever greater, along with technological

innovations that increase our ability to collect and access large amounts of

data, it is inevitable that quantitative models will become more and more

critical for synthesizing and making sense of this information in order to

solve conservation problems. The examples discussed here from the field of

sea otter conservation provide a synopsis of how models have been used in

the past, and many of the basic principles and lessons learned will apply to

future models as well. However, more computationally intensive techniques

such as individually based or agent-based models will likely become more

widespread. Future directions in quantitative models also promise to bridge

multiple conceptual levels, linking cellular-level processes to physiological and

behavioral dynamics at the organismal level, and linking these to population-,

community-, and ultimately landscape-level phenomena. Such models will

play a crucial part in solving some of the most challenging conservation

problems we now face, such as climate change, loss of bio-diversity, invasive

species, and other large-scale environmental drivers. And given their important

role as an apex predator in nearshore ecosystems, and their tractability for

scientific study, sea otters will likely continue to provide an excellent model

system for developing new conservation models.
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