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Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich
conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies
with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are
not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use
and regeneration traits.
Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral
in California.
Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in
115 plots.
Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among
communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on
more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire
history.
Conclusions: We conclude that because important correlations exist among both species traits and environmental filters,
interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive
effects.
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Introduction

Environmental conditions limit the range of viable eco-
logical strategies in a community, creating assemblages
in which functionally similar species tend to co-occur
(Diamond 1975; Weiher and Keddy 2001; Webb et al. 2002;
Cavender-Bares et al. 2009). For example, water or nutri-
ent scarcity may select for species with traits conferring
low mean and variance in resource acquisition and growth,
such as small thick leaves and high below-ground invest-
ment (Grubb 1977; Grime 1979; Diaz et al. 1998; Westoby
et al. 2002; Westoby and Wright 2006). For continuous
resource-acquisition traits, values are typically measured
across single environmental gradients, or in two contrast-
ing habitats, with the expectation that the gradient will filter
community composition by limiting the range of trait val-
ues found at each site (Knops and Reinhart 2000; Ackerly
et al. 2002; Meinzer 2003; Shipley and Almeida-Cortez
2003; Burns 2004; Hoffmann et al. 2005). In turn, such
trait filtering leads to the expectation that communities
will be phylogenetically clustered along gradients, since
close relatives often share trait values (Webb et al. 2002;
Cavender-Bares et al. 2009; Willis et al. 2010).

The expectation of close matching between envi-
ronmental filters, functional traits, and evolutionary
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relatedness may not be met, however, when a single
trait reflects multiple abiotic factors, such as plant height
responding to both light availability and disturbance
(McGill et al. 2006); when environmental gradients are not
independent of one another, such as correlations among
temperature, moisture availability, and fire (Westerling et al.
2006); or when traits are physiologically and/or evolution-
arily linked to one another, such as seed mass and seed
number (Stearns 1992; Price 1997; Westoby et al. 2002;
Vesk and Westoby 2004). Thus, successful interpretation of
the environmental filtering of ecological assemblages may
depend on understanding the functional, environmental,
and phylogenetic relationships among key traits.

One of the most widely studied resource-use traits
in plants is specific leaf area (SLA), also known as leaf
area/dry mass (Reich et al. 1997; Cornelissen et al. 2003
and references therein). High SLA tends to be associated
with high maximal rates of photosynthesis and growth,
and thus with high rates of nutrient consumption and leaf
turnover. Low SLA tends to reflect the opposing strategy
of slow nutrient consumption, low growth rates and slow
leaf turnover (Niinemets 2001; Westoby et al. 2002; Wright
et al. 2004; Wright et al. 2005; Westoby and Wright 2006;
Cornwell and Ackerly 2009; but see Lusk et al. 2010).
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2 B. Anacker et al.

The value of SLA as an indicator of broad resource-use
strategies is demonstrated by its negative correlations with
water use efficiency, nitrogen per unit leaf mass, photo-
synthetic capacity, leaf toughness, leaf longevity, leaf dry
matter content, and stomatal conductance (Reich et al.
1997; Niinemets 2001; Wright et al. 2002; Reich et al.
2003; Wright et al. 2004; Hoffmann et al. 2005; Wright
et al. 2005; Paula and Pausas 2006; Saura Mas et al. 2009).
While individuals within species may vary in their SLA
(Messier et al. 2010), among-species variation in SLA is
generally considerably greater (Cornelissen et al. 2003),
especially in heterogeneous environments (Cornwell and
Ackerly 2009).

Community assembly along gradients of climatic
favourability or soil fertility is expected to be strongly
organised by resource-use strategy as measured by SLA.
Species expressing higher SLA values should be found at
the more favourable ends of these gradients, i.e. in more
mesic (abundant rainfall, less extreme temperatures) cli-
mates and on more fertile soils (Lamont and Markey 1995;
Hopper et al. 1997; Wisheu et al. 2000; Ackerly et al.
2002; Hoffmann et al. 2005; Cornwell and Ackerly 2009).
However, these straightforward expectations may be too
simplistic if SLA is linked functionally or phylogenetically
to other, non-resource traits, or if there is a lack of inde-
pendence among the environmental gradients selecting for
functional traits.

In this article we examined the proposition that the
resource-use strategies expressed in chaparral communi-
ties, as reflected by the distribution of community-level
SLA values along gradients, are shaped not only by cli-
mate and soil fertility but also by fire. Chaparral is the
Californian term for evergreen shrubland vegetation associ-
ated with Mediterranean climates; within these climates it
tends to be found on well-drained and nutrient-poor soils
such as sandstone and serpentine. Recurrent crown fires
are a universal characteristic of chaparral, and chaparral
shrubs show alternative strategies for post-fire regenera-
tion (Keeley and Keeley 2000). Obligate resprouters are
species that survive fire and re-establish by resprouting
from underground roots, rhizomes or aerial buds; obli-
gate seeders are those that are killed by fire and recruit
from soil seed banks; and species using both strategies are
called ‘facultative seeders’ (Table 1). These regeneration
syndromes are not independent of resource-use strategies.
Resprouting, which is favoured by high fire frequency and
severity because it permits quick regeneration, comes at
the cost of reduced growth because it requires high alloca-
tion to below-ground storage. Seeding, which is favoured
by lower fire frequency and severity, requires enhanced
adaptation to summer drought because of the extremely
high mortality at the seedling stage (Keeley and Zedler
1978; Keeley 1981; Keeley et al. 2006; Pausas et al. 2006;
Verdú and Pausas 2007). Thus, although SLA is not a
fire-adaptive trait per se, fire regimes may affect it indi-
rectly by the post-fire reproductive strategies for which
they select (Clarke 2002a; Clarke 2002b; Clarke et al.
2005).

An additional link between fire and resource-use strate-
gies lies in the environmental correlations among climate,
soils, and fire. Fire regimes are affected by climate both
directly (i.e. fire is more frequent where the dry season is
longer and more severe) and indirectly through the effects
of climate on plant biomass (i.e. fire may be more fre-
quent or severe where productive climates lead to high
fuel loads). Fire regimes may also be affected by soils;
for example, plant communities on extremely infertile soils
such as serpentine may have less frequent and severe fire
because of their lower biomass accumulation and discon-
tinuous canopy cover, leading to a higher prevalence of
‘seeder’ shrub species on these soils (Safford and Harrison
2004).

In the context of Californian chaparral, we asked
whether it is reasonable to expect a dependable matching
of a single trait such as SLA to individual environmental
filters, or whether interaction terms representing the cor-
relations among traits and among filters are required for a
correct interpretation of environmental filtering. We tested
the following hypotheses: (H1) SLA is only affected by
climate; (H2) SLA is only affected by soil fertility; (H3)
SLA is only affected by fire frequency; and (H4) SLA is
affected by an interaction of several or all of these potential
environmental filters.

Materials and methods

Study system

We examined 115 plots of chaparral community composi-
tion (Figure 1). The plots are from two datasets, referred
to as ‘McLaughlin’ and ‘Central Coast’. The McLaughlin
plots were sampled on two soils (sandstone and serpentine)
and two fire histories (recently burned and unburned); the
Central Coast plots were sampled on one soil (sandstone)
in two climatic zones (maritime and interior).

The McLaughlin plot data were collected at
McLaughlin University of California Reserve, located
in Napa, Lake, and Yolo counties, California, USA.
The McLaughlin dataset includes 80 plots from
two soil types: serpentine (n = 40) and sandstone
(n = 40) (Safford and Harrison 2004). Half of the plots on
each soil type burned in an arson fire on 16 October 1999,
removing an average of 85% of the original shrub cover;
half of the plots did not burn. We refer to these plots as
‘recently burned’ and ‘unburned’, respectively.

At McLaughlin, soil fertility is correlated with fire fre-
quency and intensity, where chaparral on relatively fertile
sandstone burns significantly more often than chaparral on
very infertile serpentine (time since fire 18.6 ± 3.1 years
on sandstone vs. 73.7 ± 39 years for serpentine) and
with higher severity (Safford and Harrison 2004). Fire is
less frequent and severe on serpentine because soil infer-
tility limits biomass accumulation, as shown by positive
severity–biomass correlations within soil types. Given their
proximity, the plots at McLaughlin do not differ in climate.

The Central Coast data include 35 sandstone plots in
the coastal ranges of California, spanning climatic zones
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Effects of climate, soil, and fire on specific leaf area 3

Table 1. Expected characteristics of chaparral species with regard to post-fire regeneration strategy.

Post-fire regeneration strategy

Characteristic Resprouter Seeder References

Plant level
Allocation to

storage
High Low Pate et al. 1990; Bell et al. 1996; Bell 2001; Langley et al. 2002;

Knox and Clarke 2005; but see Chew and Bonser 2009
Growth rate Low High Pate et al. 1990; Bell et al. 1996; Bell 2001; Bond and Midgley

2003; Schwilk and Ackerly 2005; but see Chew and Bonser
2009

Height Uncertain Uncertain Midgley 1996; Bond and Midgley 2003; Falster and Westoby
2005; Menges 2007

Rooting depth Deep Shallow Bell et al. 1996; Bell 2001
Fecundity Low High Lamont 1985; Verdú 2000; Bell 2001; Bond and Midgley 2001;

Lamont and Wiens 2003

Ecological strategy
Fire Tolerate Avoid Odion and Davis 2000; Clarke 2002a; Clarke 2002b; Clarke and

Knox 2002; Russell-Smith et al. 2003; Pausas et al. 2004;
Clarke et al. 2005; Franklin et al. 2005; Ojeda et al. 2005;
Keeley et al. 2006

Drought/Aridity Avoid Tolerate Pausas et al. 2004; Clarke et al. 2005; Lloret et al. 2005; Ojeda
et al. 2005; Pratt et al. 2008; Saura Mas et al. 2009; but see
Lamont and Markey 1995

Soil infertility Avoid Tolerate Lamont and Markey 1995; Wisheu et al. 2000; Safford and
Harrison 2004

Shading Tolerate Avoid Hawkes and Menges 1996; Menges 2007; Pratt et al. 2008
Lifespan Long Short Bond and Midgley 2003; Lamont and Wiens 2003; Chew and

Bonser 2009
Competitive

ability
Uncertain Uncertain Schmalzer 2003; Clarke et al. 2005; Schwilk and Ackerly 2005;

Chew and Bonser 2009; Clarke and Knox 2009

from maritime (n = 17) to interior (n = 18) (Figure 1). This
climate transition integrates decreased presence of a sum-
mer marine fog layer, increased temperatures, decreased
relative humidity, and decreased summer water availability.
Field data from chaparral plots during the summer 2009
showed large differences between maritime and interior
climate zones (respectively) in daily average daily leaf wet-
ness (50.2 ± 1.9 vs. 3.8 ± 0.7%), vapour pressure deficit
(0.323 ± 0.027 vs. 2.154 ± 0.090 kPa), average daily max-
imum temperature (20.0 ± 0.4 vs. 31.8 ± 0.4 ◦C), and
average daily soil water content (12.3 ± 0.1 vs. 2.3 ± 0.2%)
(means ± one standard error; Vasey et al., in review).

Fire occurs less frequently in the maritime than the
interior climatic zone due to a shorter fire season, associ-
ated with cooler, less seasonal temperatures, higher rela-
tive humidity, lower evapotranspiration, and higher rainfall
(Odion and Tyler 2002). However, chaparral in the maritime
climatic zone is found on infertile, shallow, and sandy soils
relative to chaparral in the interior climatic zone, because
these edaphic factors favour the persistence of chaparral
vegetation (Griffin 1978; Sawyer et al. 2009).

Plant community composition and soil variables

At McLaughlin, woody plant community composition and
cover was measured in 2002. Visual cover was estimated as
a measure of species abundances for species in each of five
1 m2 quadrats spaced evenly along the centre-line of each
plot. Cover values were then averaged for each species and

each plot. For each plot, 50 g of soil were collected from
the centre of each quadrat at 5–10 cm depth, mixed, and
then analysed by A & L Western Agricultural Laboratories,
Modesto, California, USA, for organic matter, K, Mg, Ca,
and Bray P.

At the Central Coast plots, the plant composition
and cover of woody plants for each of the 35 plots,
each 50 × 20 m, was surveyed between 2008 and 2009
(M. Vasey et al., unpublished). Visual cover was estimated
in 10 quadrats, each 10 × 10 m, to provide a mean abun-
dance per species, per plot. Soil was collected from each
quadrat at 5–10 cm depth, mixed together, and analysed by
Brookside Laboratories, New Knoxville, Ohio, USA, for
organic matter, K, Mg, Ca, and Bray P.

Climate and fire variables

To obtain climate data for each Central Coast plot, we
intersected plot locations with maps of 10 macrocli-
mate variables from the climate mapping system for the
United States PRISM (http://www.prism.oregonstate.edu/).
Variables were based on 30-year averages and had a res-
olution of 1 km2. Variables were relative humidity (%),
potential evapotranspiration (cm), annual temperature (◦C),
minimum winter temperature (◦C), maximum summer tem-
perature (◦C), temperature seasonality (standard deviation),
annual precipitation, winter precipitation, summer precip-
itation, and precipitation seasonality (coefficient of varia-
tion).
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Figure 1. Locations of 115 chaparral study plots in western
California. Eighty plots were surveyed at McLaughlin, a
University of California Natural Reserve, stratified by soil type
(sandstone and serpentine) and burn history (recently burned and
unburned). In addition, 35 plots were surveyed on sandstone soils
in the Central Coast region; these plots were stratified by climatic
zone (maritime and interior).

To obtain data on fire regimes, we intersected plot
locations with raster grids (250 m2) of ‘fuel rank’ and
‘fire rotation’ from the California Department of Forestry
and Fire Protection’s Fire and Resource Assessment
Program (CDF 2003, Fire Regime and Condition Class,
Edition 03_2; http://frap.cdf.ca.gov/data/frapgisdata/select.
asp?theme=5). Fuel rank is based on topography, vegeta-
tive fuel loads, and climate, and varied from −1 for ‘little or
no fire hazard’ to 3 for ‘very high fire hazard”. The fire rota-
tion data are also given in classes, and are based on annual
acres burned, vegetation type, development status, eleva-
tion, and the bioregion; values range from 1 for ‘moderate
frequency’ to 3 for ‘high frequency’.

Trait data – SLA and post-fire regeneration strategy

Mean SLA (mm2 mg−1) was obtained for the 87 species
found in the plots (see Supplementary Table 1 in
Appendix 1, available via the supplementary tab on the arti-
cle’s online page at http:/dx.doi.org/10.1080/17550874.
2011.633573) from several sources, primarily from new
field measurements. For 66 of the species, SLA was mea-
sured from new field collections, where 10 leaves were
collected from each of 10 individuals. Individuals were

sampled from at least three unique populations. To account
for phenotypic plasticity of SLA with respect to soil, for
species occurring on both serpentine and non-serpentine
(34 of the 66 species), five individuals were sampled from
each soil; for the others, all individuals were sampled
from one soil type. Mean SLA per species was determined
using a standard protocol (Cornelissen et al. 2003). For
nine species, SLA data were available from The Ecological
Flora of California (http://ucjeps.berkeley.edu/efc/), so new
field measurements were not sought. For an additional
12 Arctostaphylos that were very geographically rare, we
measured SLA using our own dried herbarium specimens.
To validate using SLA from dried leaves versus fresh leaves
for Arctostaphylos, we measured SLA from both dry leaves
and from fresh leaves for 20 additional, more common
Arctostaphylos taxa, and found that the two measures were
highly correlated (r2 = 0.88, n = 20, b = 1.01, intercept
= −0.09, P < 0.001). To examine intraspecific variation of
SLA by soil type, soil type-specific SLA means were also
calculated for the 34 species collected on two soils. In all
analyses described below, mean SLA was log-transformed
to meet the assumptions of parametric analyses. It is pos-
sible that the SLA values we determined for these species
would differ if measured in other environments than those
selected because genotypes and environments interact to
determine phenotypes.

For each of the 87 species, we determined post-fire
regeneration strategy using Hickman (1993), published lit-
erature, and expert opinion by the authors (primarily JK).
We designated each species as an obligate resprouter, obli-
gate seeder, or facultative resprouter (can resprout or recruit
from seed following fire). Only 20% of our species can both
resprout and post-fire seed, suggesting a negative trade-
off between resprouting capacity and propagule persistence
(Pausas 2001; Pausas and Verdu 2005).

Analyses

Correlated environmental filters. We tested if field-
measured edaphic variables, remotely sensed macroclimate
variables, and/or remotely sensed fire attributes differed
among climatic zones (interior, maritime) using one-way
ANOVA. Relationships of soil fertility, fire frequency and
intensity, and recent burn history at McLaughlin, described
above, are reported elsewhere (Safford and Harrison 2004),
and thus new analyses were not conducted here.

Correlated traits. At the species level (n = 87), we tested
whether SLA differed by post-fire regeneration strategy,
using one-way ANOVA, and also repeated this analy-
sis using a correction for phylogenetic non-independence
(comparative analysis by independent contrasts (CAIC);
details in Appendix 2, available online, as before).

The percentage of obligate seeders in each plot was
calculated; percentages were weighted by abundance to
down-weight the relative influence of rare species on
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the description of functional structure. The abundance-
weighted percentage for each plot was calculated as fol-
lows: (sum abundance obligate seeders / sum abundance
of all species) × 100. We calculated community-level post-
fire strategy with obligate seeders as the numerator because
both facultative resprouters and obligate resprouters are
ecologically similar in the sense that they can both resprout.
For McLaughlin, we tested if the percentage of obligate
seeders differed by soil type, burn history, and their interac-
tion (two-way ANOVA). Prior to analysis, the percentage of
obligate seeders was arc-sine transformed. For the Central
Coast dataset, we tested if the percentage of seeders differed
among climatic zones using one-way ANOVA.

Environmental correlates of SLA. At the community level,
we tested if the mean abundance-weighted SLA observed
in each plot at McLaughlin differed by soil type, burn his-
tory, and their interaction (two-way ANOVA). For each plot,
the mean abundance-weighted SLA was calculated by sum-
ming the product of each species’ SLA and its proportion
of total cover in that plot, and then dividing by the number
of species in that plot. We used the proportion of a species
cover in each plot as our metric of abundance, rather than
abundance alone. To examine for intraspecific variation in
SLA by soil type, we compared the SLA of sandstone
collections with the SLA of serpentine collections for the
34 species collected from both soil types using a paired
t-test. For the Central Coast, we tested if abundance-
weighted mean SLA differed among climatic zones using
one-way ANOVA.

Environmental filtering of SLA. To test for filtering of SLA,
the range of SLA for each community was calculated
(rangeobs) and compared with a null expectation of the
range of SLA at the observed level of richness (rangeexp)
(sensu Cornwell and Ackerly 2009). We randomly sam-
pled the species pool, by data set, 9999 times for each
level of observed species richness among the plots, and
calculated the mean range of SLA values for each level of
species richness. Communities in which a filter is operating
will have rangeexp > rangeobs. We tested if the distribu-
tion of rangeexp − rangeobs was significantly greater than
zero using a one-tailed t-test. We then tested if rangeexp −
rangeobs in each plot differed by soil type, burn history, and
climatic zone using a two-way ANOVA. All analyses were
performed in R version 12.0 (R Development Core Team
2010).

Results

Correlated environmental filters

Serpentine plots had a significantly lower Ca:Mg ratio,
higher organic matter content, and lower P and K levels
than the sandstone plots. The less fertile maritime plots had
a significantly lower Ca:Mg ratio and lower P level than the
interior plots (Table 2). There were higher fuel levels and
also more frequent fires in interior plots than in maritime

plots (Table 2). For the macroclimate variables, interior
plots were shown to be significantly more arid than mar-
itime plots (lower relative humidity, higher potential evap-
otranspiration, higher summer temperature, lower winter
temperature, and higher temperature seasonality), although
precipitation did not differ by zone (Supplementary Table 2
in Appendix 1, available online).

Correlated traits

At the species level, mean SLA was significantly higher in
obligate resprouters than in either facultative resprouters
or obligate seeders (one-way ANOVA: F2, 84 = 16.4;
P < 0.001) (Figure 2). This relationship was not signif-
icant after correction for phylogenetic non-independence
(P = 0.327) (Appendix 2, available online), demonstrating
shared variation among higher taxa.

The abundance-weighted percentage of seeders was
significantly lower on sandstone soils compared to serpen-
tine soils (Figure 3a), but this soil contrast disappeared in
recently burned plots (two-way ANOVA: soil F1, 76 = 26.2,
P < 0.001; burn history F1, 76 = 21.9, P < 0.001; soil ×
burn history F1,76 = 2.94, P = 0.09; Figure 3a). For the
Central Coast plots, there was a higher abundance-weighted
percentage of obligate seeders in the low-fire, maritime cli-
matic zone compared with the high-fire, interior climatic
zone (Table 2; Figure 3c). The Central Coast compared with
McLaughlin had a lesser proportion of obligate resprouters
(0.40 vs. 0.54), more obligate seeders (0.38 vs. 0.27),
and roughly the same proportion of facultative seeders
(0.22 vs. 0.19).

Environmental correlates of SLA

In the McLaughlin plots, abundance-weighted mean SLA
was significantly higher on sandstone soils compared with
serpentine soils (Figure 3b), regardless of burn history
(two-way ANOVA: soil F1, 76 = 20.3, P < 0.001; burn his-
tory F1, 76 = 1.0, P = 0.31; soil × burn history F1, 76 = 0.3,
P = 0.59). Plant abundances were significantly lower on
serpentine soils, but this difference was only present among
the unburned plots (Figure 3c; two-way ANOVA: soil F1, 76

= 6.1, P = 0.015; burn history F1, 76 = 690.5, P < 0.001;
soil × burn history F1, 76 = 4.9, P = 0.03). In the Central
Coast plots, abundance-weighted mean SLA was not sig-
nificantly different between climatic zones (Figure 3e), nor
was abundance (Figure 3f).

Conspecifics had 18% higher mean SLA on sandstone
than serpentine soil (paired t-test: t = 2.31, df = 33,
P = 0.027). At the community level, in contrast, mean
unweighted SLA was even greater, with values in sand-
stone plots 32% higher than in serpentine. Thus, variation
in SLA among communities was due to both compositional
turnover and intraspecific variation (i.e. phenotypic plastic-
ity), but species replacement played a larger role, similar
to previous results for Californian woody plants (Cornwell
and Ackerly 2009).
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6 B. Anacker et al.

Table 2. Environmental differences by soil type (McLaughlin plots; sandstone, serpentine) and climatic zone (Central Coast plots;
interior, maritime).

McLaughlin Central Coast

Sandstone Serpentine F P Interior Maritime F P

Edaphic
Ca:Mg ratio 3.4 ± 2.2 0.5 ± 0.5 69.1 < 0.001 6.9 ± 1.6 4.5 ± 3.4 7.2 0.011
Bray P (ppm) 7.0 ± 2.6 3.4 ± 1.8 53.0 < 0.001 37.6 ± 23.6 14.4 ± 33.5 5.5 0.025
K (ppm) 227.8 ± 62.8 128.5 ± 71.3 44.0 < 0.001 221.1 ± 76.7 172.6 ± 88.6 3.0 0.094
Organic

matter (%)
4.3 ± 0.9 5.2 ± 1.5 9.5 0.003 5.0 ± 3.8 6.5 ± 1.8 2.2 0.152

Fire
Fuel rank1 na na na na 2.1 ± 0.5 1.6 ± 0.7 6.6 0.015
Fire rotation na na na na 2.6 ± 0.6 1.5 ± 1.1 15.3 0.001

Notes: Mean ± one standard deviation. P values are reported from one-way ANOVA of each variable with soil type or climatic zone. Degrees of freedom
for McLaughlin are 1 and 78 for the factor and the residuals, respectively. Degrees of freedom for Central Coast are 1 and 33 for the factor and the
residuals, respectively.
1Higher fuel ranks correspond to higher potential fire hazard.
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Figure 2. Relationship of SLA and post-fire regeneration strat-
egy among the 87 species considered here. Letters above box-
plots indicate significant differences based on a post-hoc Tukey’s
HSD test. Open circles indicate observations considered to be
outliers.

Environmental filtering of SLA

The range of SLA values for the McLaughlin plots was
significantly lower than expected under the null model,
indicating environmental filtering (54 of 80 had rangeexp −
rangeobs < 0; P = 0.004) (Figures 4a, b). Filtering strength
(rangeexp − rangeobs) was significantly higher on sandstone
than serpentine (one-way ANOVA: soil F1, 78 = 15.7, P =
0.0002; Table 2). Filtering strength was also related to burn
history, and soil type × burn history (two-way ANOVA:
soil F1, 76 = 18.4, P < 0.001, burn history F1, 76 = 11.6,
P = 0.001; soil × burn history F1, 76 = 4.2, P = 0.044). The
interaction term reflected that filtering was significant for
unburned plots on both soils and for recently burned plots
on serpentine, but not recently burned plots on sandstone.
The range of SLA values for the Central Coast plots was not

significantly lower than expected (17 of 35 had rangeexp −
rangeobs < 0; P = 0.378) indicating a lack of filtering by
climatic zone (Table 2, Figure 4c).

Discussion

Among Californian chaparral communities varying in cli-
mate, soil fertility, and fire histories, we found that SLA,
a critical indicator of resource-use strategy, did not follow
the simple patterns anticipated from considering individ-
ual filters. Within the McLaughlin data, SLA was lower on
infertile serpentine soils, as expected, but fire also played a
role in broadening the range of SLA present on more fer-
tile sandstone soils (relaxing filtering). Within the Central
Coast data, SLA did not follow any simple expectations,
being higher neither in more equable maritime climates,
nor in the interior where soils are more fertile and fires are
more frequent. These results are most consistent with the
hypothesis that SLA is affected by an interaction of climate,
soil fertility, and fire. Key to understanding this interac-
tion are the correlations we found, at both the species and
community levels, between SLA and post-fire regeneration
strategies, and also the environmental correlations between
climate, soils, and fire frequency.

Obligate post-fire seeders had significantly lower SLA
than obligate post-fire resprouters (Figure 2). This contra-
dicts the notion that the reduced need for storage of the
seeding strategy should lead to relatively higher growth
rates and associated higher SLA in seeders (Table 1). The
correlation we observed may reflect a physiological trade-
off in which obligate seeding imposes strong selection for
drought tolerance at the seedling stage (Ackerly 2004).
Infertile soils may also select for drought-tolerant seed-
ers due to imposing arid conditions (high rock content,
high exposure to direct sun, high rates of soil evapora-
tion) (Ojeda et al. 2005; Pratt et al. 2008). While seeders
have low allocation to roots and shallow rooting depth, and
thus a limited ability to avoid drought by reaching water in
lower soil horizons, they may tolerate soil aridity if they
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Figure 3. Plant community attributes for serpentine and sandstone soils (a–c) and interior and maritime climatic zones (d–f). Recent
fire history is indicated for the McLaughlin data as follows: B, recently burned; U, unburned. Letters above boxplots indicate significant
differences based on a post-hoc Tukey’s HSD test. Open circles indicate observations considered to be outliers.

have leaf-level strategies, such as low SLA, that provide
an advantage under low-resource conditions (Poorter et al.
2009; Saura Mas et al. 2009). Post-fire resprouters, in con-
trast, avoid drought by having deeper rooting systems (Bell
et al. 1996; Bell 2001).

The correlation between post-fire regeneration strategy
and SLA was not significant in an analysis of phyloge-
netically independent contrasts, reflecting the influence of
species-rich lineages (i.e. Arctostaphylos and Ceanothus;
Appendices 1 and 2, available online) that share particu-
lar trait combinations (e.g. post-fire seeding and low SLA)
through common inheritance. This means that the obser-
vation of low SLA and obligate seeding in a community
is in part due to common descent. In other words, an
environmental filter may be directly selecting for obligate
seeding, and thereby indirectly selecting for the corre-
lated low SLA value, or vice versa. Similarly, a study of
37 plants of the Iberian peninsula showed phylogenetic
non-independence among post-fire regeneration strategy
and fruit type (Pausas and Verdu 2005). Such patterns of
phylogenetic non-independence in traits are well known
and form the basis of phylogenetic clustering in community
structure (Webb et al. 2002; Anacker 2011).

The observed patterns of post-fire regeneration strategy
confirmed that fire was more frequent on sandstone rela-
tive to serpentine (obligate seeders were more common in
serpentine chaparral), and that fire was more frequent in

the interior than on the coast (obligate seeders more com-
mon in maritime chaparral). In the arid interior, the infertile
conditions of serpentine soil limit fuel accumulation, cre-
ating local fire refugia and favouring seeders. Along the
coast, cool and wet climates limit the length and severity
of the fire season and the flammability of fuels, leading
to low regional fire frequencies, favouring seeders; low
soil fertility is likely important in determining the balance
between woodland and chaparral (Griffin 1978; Sawyer
et al. 2009), rather than affecting fire regime. Another
factor favouring obligate seeding in maritime chaparral
is that longer time intervals between fires may increase
the severity of fires when they do occur, lowering adult
survivorship.

Chaparral on serpentine soils at McLaughlin had sig-
nificantly lower SLA than chaparral on sandstone even
immediately following a fire (Figure 3), suggesting that
soils play the dominant role in shaping SLA in this setting.
However, our observation that low-SLA obligate seeders
are much more prevalent on infrequently burning serpen-
tine stands (Figure 3) suggests that fire does interact with
soil to determine community-level SLA over longer time
periods. In our Central Coast data, SLA did not differ
between maritime and interior plots, even though mesic
maritime climates should promote high SLA near the coast,
while both frequent fire and more fertile soils are predicted
to lead to higher SLA in the interior. Abundant evidence
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Figure 4. The range of SLA observed in chaparral plots versus
null expectation. Points below the line have lower observed ranges
than expected by chance.

from other studies shows that SLA tends to be higher in
productive habitats (reviewed in Cornelissen et al. 2003;
Westoby and Wright 2006; Poorter et al. 2009), such as our
maritime plots where water availability is high. Thus, one
of our more striking findings is that the globally predomi-
nant role of climate in shaping SLA can be nullified by the
more localised effects of soil fertility and fire, if these gra-
dients happen to vary in the opposite direction with respect
to their effects on SLA.

Conclusions

We found that community structure in Californian
chaparral is shaped by the environmental filtering of a key
resource-acquisition trait – SLA – by the simultaneous

effects of climate, soil fertility, and fire. Interactive
effects of these three filters arose from two factors: the
phylogenetic and functional non-independence of SLA and
another critical trait (post-fire regeneration strategy), and
the non-independence of the three environmental filters
themselves. Our results provide a clear warning that incor-
rect inferences about functional and phylogenetic commu-
nity structure may be reached when either traits or filters
are considered in isolation.
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