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Abstract

Abundance estimation of carnivore populations is difficult and has prompted the use of non-
invasive detection methods, such as remotely-triggered cameras, to collect data. To ana-
lyze photo data, studies focusing on carnivores with unique pelage patterns have utilized a
mark-recapture framework and studies of carnivores without unique pelage patterns have
used a mark-resight framework. We compared mark-resight and mark-recapture estimation
methods to estimate bobcat (Lynx rufus) population sizes, which motivated the develop-
ment of a new "hybrid" mark-resight model as an alternative to traditional methods. We de-
ployed a sampling grid of 30 cameras throughout the urban southern California study area.
Additionally, we physically captured and marked a subset of the bobcat population with
GPS telemetry collars. Since we could identify individual bobcats with photos of unique pel-
age patterns and a subset of the population was physically marked, we were able to use tra-
ditional mark-recapture and mark-resight methods, as well as the new “hybrid” mark-resight
model we developed to estimate bobcat abundance. We recorded 109 bobcat photos dur-
ing 4,669 camera nights and physically marked 27 bobcats with GPS telemetry collars.
Abundance estimates produced by the traditional mark-recapture, traditional mark-resight,
and “hybrid” mark-resight methods were similar, however precision differed depending on
the models used. Traditional mark-recapture and mark-resight estimates were relatively im-
precise with percent confidence interval lengths exceeding 100% of point estimates. Hybrid
mark-resight models produced better precision with percent confidence intervals not ex-
ceeding 57%. The increased precision of the hybrid mark-resight method stems from utiliz-
ing the complete encounter histories of physically marked individuals (including those never
detected by a camera trap) and the encounter histories of naturally marked individuals de-
tected at camera traps. This new estimator may be particularly useful for estimating abun-
dance of uniquely identifiable species that are difficult to sample using camera traps alone.
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Introduction

Reliably estimating abundance of carnivores can be difficult because many populations exist in
low densities and are wide-ranging, nocturnal, and secretive [1-3]. Consequently, traditional
methods of physical capture have been replaced by the use of non-invasive detection tech-
niques such as remotely-triggered cameras, which offer a viable option for assessment of carni-
vore abundance [3-7]. Specifically, camera traps are low cost, low maintenance, and create
minimal disturbance, and photo records provide information on date, time, activity patterns,
and individual identification if animals have natural or artificial individually-distinct marks.
Both mark-recapture [8] and mark-resight [9] methods have been used to estimate popula-
tion numbers from photo data. Under the photographic mark-recapture framework, research-
ers non-invasively "capture” animals via photograph and identify individuals by their pelt
pattern or other natural markings. After first capture by a camera trap, animals are considered
"marked" based on unique natural characteristics. Encounter histories for marked individuals
(i.e., those photographed at least once) are constructed for a series of recapture occasions from
which detection probability and abundance can be estimated. Photographic mark-recapture
studies have focused on a variety of felids with unique pelage patterns, including tigers
(Panthera tigris) [10], ocelots (Leopardus pardalis) [11,12], jaguars (Panthera onca) [13], leop-
ards (Panthera pardus) [3], snow leopards (Uncia uncia) [14], and bobcats (Lynx rufus) [15].
Camera data are difficult to use in a mark-recapture framework when animals do not have
unique pelage or other natural markings, because individuals cannot be identified by photo-
graph alone. However, if researchers can physically mark some animals and individually identi
fy the tagged animals with photographs, mark-resight models may be appropriate [9,16]. In
mark-resight studies, after the initial marking of individuals, there may be one or several re-

sighting occasions in which marked animals are resighted, but unmarked animals remain un-
marked and are counted as such. This distinguishes mark-resight from mark-recapture
methods because no new marks are introduced during resighting occasions.

Herein we use camera data to estimate population sizes of bobcat within and around an
urban coastal reserve in southern California. Due to their sensitivities to urban fragmentation,
bobcats have been a focal species in several studies throughout southern California [2,17-20],
yet few bobcat density estimates exist for this region (but see Ruell et al. [21]). Bobcats are indi-
vidually identifiable by pelt patterns, thus photo data for this species can be used with mark-re-
capture models [15,22]. Additionally, we conducted our camera trap survey in conjunction
with an ongoing GPS telemetry study, where animals were physically marked by researchers,
thus providing an opportunity to use a mark-resight framework. This unique study design
therefore enabled the use of both mark-recapture and mark-resight methods. We compare
these approaches and evaluate the potential advantages and disadvantages of each for estimat-
ing carnivore abundance using remote cameras. This comparison motivated the development
of a new "hybrid" mark-resight model as an alternative to traditional mark-recapture and
mark-resight methods.

Materials & Methods
Study Area

The San Joaquin Hills study area was located within the Coastal Reserve (33°36’N; 117°47°W)
of the Nature Reserve of Orange County, south and west of two principal 10-lane freeways be-
tween the cities of Costa Mesa and Laguna Niguel, California (Fig 1). The landscape contained
a mix of urban and suburban development as well as natural habitat, including undeveloped
private property, nature reserves, state parks, and county parks. Natural habitat primarily
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Fig 1. The San Joaquin Hills study area, Orange County, California. The sampling unit grid (dashed
lines) was used to determine the locations of remote camera stations. Map figure base layers from SCAG [35]
and StreetMap USA for ESRI ArcGIS 9.3, for representational purposes only.

doi:10.1371/journal.pone.0123032.g001

consisted of coastal sage scrub, chaparral, riparian, coastal oak woodland, and annual
grassland communities.

Camera Trap Survey

Within our study area, we created a square sampling grid consisting of 2 km x 2 km (4 km?)
sampling units. This unit size represents the average bobcat home range in the nearby North Ir-
vine Ranch [23], a useful approximation for the preferred cell size of camera grids [24] (Fig 1).
Given that bobcats typically avoid urbanized areas [19,20], we only considered 30 sampling
units that intersected open space parks and reserves for camera monitoring. Each of these sam-
pling units was further subdivided into 16 grid cells measuring 500 m x 500 m each, one of
which we randomly selected for installation of a film camera trap (Camtrakker; CamTrak
South Inc., Watkinsville, Georgia, USA). We used the presence of bobcat sign (e.g., tracks, scat)
and expert opinion to select the specific camera trap locations within each cell to increase the
probability of passively detecting bobcats via camera traps along likely movement routes (e.g.,
dirt trails and roads) within the study area. We attached a single camera to a post and placed it
perpendicular to suspected travel routes to capture the best possible photographs for pelt iden-
tification and matching [25]. Although a dual camera set up is advantageous in order to photo-
graph both sides of an individual [10,26], funding and logistical constraints precluded this
option given the geographic coverage required. We set the cameras with a 3-minute delay be-
tween successive photographs, the shortest available delay on the camera model we used, and
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cameras were set to sample 24 hours a day. We conducted our camera survey from July 2006 to
January 2007.

Physical Capture

In addition to the camera trap surveys, bobcats were detected on the study area via physical
captures for a concurrent GPS telemetry research project. Bobcats were captured in cage traps
placed in locations based on sign and knowledge of bobcat movement. Bobcats were fitted with
a unique combination of an ear tag and colored taping on the GPS telemetry units, or an ear
tag and a cat collar after all GPS units were deployed and no longer available. During handling
we photographed all animals on both sides of their body in a series of systematic poses to aid in
identification of physically captured animals later photographed by camera traps. As described
in Heilbrun et al. [25], the poses included photographs of the fore legs, hind legs, torso, face,
and tail of the captured animals. These capture photos were compared to the remotely-trig-
gered camera photos to assist with individual identification.

Ethics statement

We conducted our study under California Department of Fish and Wildlife Scientific Collect-
ing Permit SC 005436, which covered all aspects of the research in the study area, including an-
imal capture and camera traps. Animal Care and Use Committees for the U.S. Geological
Survey and Colorado State University (protocol 03 - 187A - 0) approved our study.

Photograph Identification

We individually identified animals by comparing bobcat photographs using the pelt-pattern
identification protocol outlined by Heilbrun et al. [25]. Since our camera traps consisted of a
single camera, most useable photos were taken of either the left or right side of the body. Photo-
graphs of poor quality due to inadequate lighting, distance (e.g., too close or too far from the
camera), and extreme angles (e.g., walking straight into or away from the camera) were not in-
cluded because individual pelts could not be reliably identified. Following Heilbrun et al. [25],
individual bobcats were matched by confirming that at least three natural pelage features (e.g.,
groupings of leg spots, groupings of body spots, facial markings, and tail markings) or artificial
(i.e., human-made) marks (e.g., ear tags or GPS/cat collars) were present in both photographs.
The identification of a differing feature between pelt patterns of photographed bobcats indicat-
ed unique individuals. Complete encounter history data can be found in McClintock et al. [27].

Abundance Estimation

Mark-recapture. We used closed capture mark-recapture models in program MARK [28]
to estimate bobcat abundance. Under the mark-recapture framework, there is an initial capture
and marking occasion followed by several recapture occasions where new marks are added to
the population [8]. Marks added in either the initial capture occasion or subsequent occasions
may be artificial marks (e.g., tags, collars, dyes, etc.) or the identification of natural marks (e.g.,
individually-unique pelage patterns or other natural characteristics). In our mark-recapture
study, we marked animals captured via camera traps by identifying individual pelt patterns. Al-
though bobcats are uniquely identifiable by spot patterns, the patterns are bilaterally asymmet-
rical [25]. We were therefore unable to match left-side photos with right-side photos because
we used a single camera at each station. Consequently, the data were split into left- and right-
side encounter histories, and these left- and right-side datasets were analyzed separately. The
closed capture mark-recapture models in program MARK require sampling without
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replacement, meaning individuals are encountered at most once per sampling occasion. We de-
fined a sampling occasion as a 23-day period pooled across all cameras such that capture prob-
abilities were >0.1 [8], yielding a total of 8 sampling occasions during the study period. An
individual photographed at least once within any given 23-day sampling occasion was consid-
ered captured for that occasion. To explore heterogeneity in detection probability, we exam-
ined models that assumed no capture heterogeneity (model Mo), capture heterogeneity due to
time (Mt) corresponding to the wet (December-January) and dry (July-November) seasons,
capture heterogeneity based on individual sources of variation using two mixtures (Mh2), and
capture heterogeneity due to seasons and individual variation (Mth2) [8,29]. We calculated
abundance by model averaging over the entire model set for each side-specific estimator [30].

Mark-resight. Under the mark-resight framework, an initial marking period is followed
by resighting occasions where, unlike the mark-recapture framework, no new marks are added
to the population. Thus, unmarked animals remain unmarked throughout the study [9]. In our
study, the initial capture occasion occurred during the physical capture and artificial marking
of bobcats with a unique combination of ear tags and collars for an ongoing GPS telemetry
project. Bobcats that were never physically captured were considered unmarked throughout
the study. After the physical capture period, we used the remotely-triggered camera grid to re-
sight both marked and unmarked animals. Because we physically marked animals and docu-
mented pelt patterns on both sides during the initial marking period, we were able to combine
both the left- and right-side photo datasets for the mark-resight analysis. We used the Poisson
log-normal (PNE) mark-resight estimator in program MARK [31] to estimate bobcat abun-
dance. Unlike the mark-recapture models discussed above, sampling may be with replacement
for the PNE, so distinct sampling occasions do not need to be delineated; instead, all marked
and unmarked individual photo resightings were counted over the duration of the study. For
the PNE mark-resight analysis, we examined models with and without the individual heteroge-
neity parameter (o). As with the mark-recapture models, we calculated abundance by model
averaging over the entire model set for each estimator [30].

Hybrid mark-resight. Neither traditional mark-recapture nor mark-resight methods uti-
lize all of the available information about the resighting process afforded by this unique study
design. The mark-recapture approach uses encounter histories for all individuals based on pelt
patterns, but ignores the number of artificially marked individuals that were known to be alive
and never photographed during the study period. The traditional mark-resight approach ac-
counts for artificially marked individuals that were known to be alive but never photographed,
thus making it more robust to individual sighting heterogeneity than capture-recapture meth-
ods. However, only the encounter histories for individuals that are artificially marked are used,
and the encounter histories based on individual pelt patterns must be collapsed into simple
counts of unmarked individuals. To take advantage of the information provided by both natu-
ral pelt patterns and artificially marked individuals, we developed a "hybrid" Poisson log-
normal mark-resight estimator (hPNE) for comparison to the traditional mark-recapture and
mark-resight estimators described above.

The hPNE uses a Poisson model for resightings of the m artificially-marked individuals
and a zero-truncated Poisson model for sightings of the n individually-identifiable (but not
artificially-marked) individuals photographed at least once. The likelihood for the individual
sighting rate parameter, 4;, is therefore

L(Aly) = [H ilx{exﬁ.(!_;bi)]

i=1

[T exp(—4)
Hy,-!u ~exp(~4)) @

i=m+1

where 4; = exp(a;), and y; is the number of times individual i = 1,...,m+n was photographed
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during the study period. Here, y; € {0,1,. . .}for i = 1,...m, and y; € {1,2,. . .}for i = m+1,...m+n.
To accommodate individual heterogeneity in sighting rates, we assume a; ~ N(y,0°), where a; =
log(4,). We further assume #|N,p™ ~Binomial(N-m,p*), where

00

pr=1- /exp(—exp(a))N(oc;u, o”)do

—00

is the mean probability of being photographed at least once, and N(asu,0°)is the normal densi-
ty. This model can be easily implemented using Bayesian analysis methods, and we completed
our specification with the priors Nox 1/N, y~N(0,1), and >~T1(3,2)

We performed separate hPNE analyses for the left-side and right-side datasets. In both anal-
yses, we compared models with and without individual heterogeneity (i.e., o> = 0) using the De-
viance Information Criterion (DIC, [32]). For each model, 400000 samples were drawn from
the posterior distribution (after burn in) using OpenBUGS ([33]; see S1 Appendix for BUGS
code). For each model, we ran three chains initiated from overdispersed starting values and
found no evidence for lack of convergence based on standard diagnostics implemented in
OpenBUGS.

Density Estimation

For comparison with other bobcat population studies, we calculated population density from
each abundance estimate. Density estimates can be sensitive to methods used to determine the
size of a study area [3,12]. As such, it may be difficult to compare densities if methods of study
area delineation vary across studies [12]. To determine the size of the effective study area, we
used methods similar to Ruell et al. [21], who estimated bobcat densities via non-invasive fecal
DNA surveys in the Santa Monica Mountains north of Los Angeles. We used our GPS teleme-
try data to calculate mean bobcat home range size (8.83 km?, 95% CI 5.26-12.39 km* n = 8
males and 6 females), estimated with a fixed 95% kernel [34]. We then created buffers in Arc-
GIS 9.3 (ESRI, Redlands, California, USA) around each camera location for the radius (1.68
km, 95% CI 1.29-1.99 km) and the diameter (3.35 km, 95%CI 2.59-3.97 km) of the mean
home range size. The buffers were dissolved into one layer for the radius and one layer for the
diameter measurements, thus eliminating overlap between the individual camera buffers. Fol-
lowing Ruell et al. [21], we removed areas of intense urbanization from the buffer, which our
GPS-collared bobcats generally avoided; 7% (SE = 2%) of GPS locations per individual were lo-
cated in urban areas, as classified by GIS land-use layers from the Southern California Associa-
tion of Governments [35]. The buffer did include golf courses, regional parks, riparian strips,
and natural habitat, which bobcats used more frequently (Fig 2).

Following Ruell et al. [21], to calculate density point estimates we divided our abundance es-
timate by the effective study area derived from the mean home range radius and again separate-
ly by the area derived from the mean home range diameter (see Table 1). Standard errors were
approximated using the delta method. Confidence intervals for abundance and density were
calculated as 95% logarithm-transformed normal for the mark-recapture and PNE models. For
hPNE, we calculated 95% highest posterior density intervals for abundance and density.

Assumptions

Closed population abundance estimation, including both mark-recapture and mark-resight es-
timators, entails 3 key assumptions: 1) the study population is closed both geographically and
demographically; 2) marks (both natural and artificial) are not lost; and 3) marks are properly
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Fig 2. The effective study area using the radius and diameter of mean bobcat home range size (8.83
km?) buffered around camera stations. Urban or water land use classifications [35] were removed from the
buffers. Map figure base layer from SCAG [35] for representational purposes only.

doi:10.1371/journal.pone.0123032.g002

identified [8,16]. We believe we satisfied the assumption of geographic closure because urbani-
zation surrounded the study area to the north, east, and south, while the Pacific Ocean bor-
dered the study area to the west. In addition, we did not detect any bobcats moving onto or off
of the study area via GPS telemetry or remotely-triggered cameras during the study. Kittens are
typically born in the spring and early summer, and we did not document any births during the
study period (July to January). We therefore suspected few (if any) births during the study and
were not particularly concerned about violations of demographic closure due to reproduction.

Table 1. Camera survey model-averaged mark-recapture and mark-resight bobcat Lynx rufus abundance (ﬂ) and density/km? (f)) estimates in the
San Joaquin Hills study area, Orange County, California.

Estimator N 95% ClI b, 95% ClI bd 95% Cl % CIL
Mark-recapture (RS) 44 30-87 0.45 0.31-0.90 0.37 0.25-0.73 131
Mark-recapture (LS) 36 27-66 0.37 0.28-0.68 0.30 0.23-0.55 107
Mark-resight 56 39-97 0.58 0.40-1.01 0.47 0.33-0.82 104
Hybrid mark-resight (RS) 55 43-70 0.57 0.46-0.74 0.46 0.36-0.59 49
Hybrid mark-resight (LS) 60 45-79 0.62 0.48-0.83 0.50 0.38-0.66 57

Right-side (RS) and left-side (LS) analyses were conducted for the mark-recapture and hybrid mark-resight estimators. Separate density estimates were
derived from the estimated radius (D,) and diameter (Dd) of average home range size. % CIL denotes the 95% confidence (or highest posterior density)
interval length relative to N and D.

doi:10.1371/journal.pone.0123032.t001
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However, the demographic closure assumption was not met because we documented bobcat
mortality during the study period, including four bobcat road kill mortalities. Nevertheless, we
found little evidence for closure violations based on open population models for our left- and
right-sided mark-recapture data (see S2 Appendix). We note that when demographic closure is
violated due to mortality or permanent emigration, the mark-resight models provide an esti-
mate of the population at the beginning of the study period.

Regarding the second and third assumptions, we observed retention of the artificial marks,
and the bobcat pelt patterns used to identify individuals do not change over time [22,25]. In ad-
dition, the pelt pattern identification protocol outlined by Heilbrun et al. [25] was designed to
minimize incorrect matching of bobcat pelts by requiring that the three pelage features on the
animals (or one artificial mark) must match. Identifying at least one differing feature between
animals confirmed unique individuals. Several researchers in this study independently re-
viewed and confirmed the matches.

The mark-resight estimators have one additional assumption that marked animals and un-
marked animals have independently and identically distributed resighting probabilities. This
assumption requires that the marked sample accurately represents the sighting probabilities of
the entire population and that sighting probability is independent of mark status [36]. We be-
lieve this assumption was reasonably satisfied by using a different method and site locations for
physical capture and marking (i.e., cage traps) from the resighting method (i.e., camera traps).

Finally, the models require that the number of physically-marked animals in the population
be known, and we determined this from the known bobcats at the beginning of the camera sur-
vey via GPS collaring efforts and additional camera sampling (from other ongoing projects) of
physically-marked individuals.

Results

We captured 109 bobcat photos in 4,669 camera trap nights (number of nights that camera
traps were operating). Seventeen of those photos were not used in the mark-recapture or mark-
resight analysis due to poor photo quality. For the closed capture mark-recapture analysis, we
organized the usable photographs into two datasets consisting of 49 right- and 42 left-side pho-
tos. Since sampling is without replacement for the closed capture mark-recapture estimator, we
were able to use only 35 right-side photos and 34 left-side photos because some individuals
were captured multiple times within a 23-day sampling occasion. We identified 23 individual
bobcats in the left-side photo data set (16 captured once, 5 captured twice, 1 captured thrice,
and 1 captured four times) and 23 individuals in the right-side photo data set (17 captured
once, 3 captured twice, 2 captured thrice, and 1 captured six times). Based on physical and
photo captures, the minimum count of individuals known to be in the population during our
study was 41 bobcats.

Model-averaged mark-recapture point estimates slightly differed between the right-side (44
bobcats) and left-side (36 bobcats) datasets, but they were not significantly different given over-
lapping 95% confidence intervals (Table 1). The right- and left-side datasets supported differ-
ing models with respect to capture heterogeneity (Table A in S3 Appendix). The right-side
dataset most supported the model with an individual heterogeneity effect, as well as that with
an individual heterogeneity effect and a seasonal time effect. The left-side dataset most sup-
ported the null model with no capture heterogeneity or seasonal time effects. The model with a
seasonal time effect received some support, but models including individual capture heteroge-
neity had little support.

Under the PNE mark-resight framework, sampling is with replacement, so all usable left-
and right-side photographs were combined into one dataset. We physically captured and
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marked m = 27 bobcats on the study area, and 15 of those animals were resighted with the re-
motely-triggered camera grid, resulting in 45 photographs of marked individuals and 47 photo-
graphs of unmarked individuals. For this analysis, we were able to use one additional
photograph known to contain a marked individual, but not identified to individual identity
[31]. The PNE analysis showed strong support for the individual heterogeneity model (Table B
in S3 Appendix) and the abundance estimate of 56 bobcats was higher than the mark-recapture
abundance estimates, but not significantly different (Table 1).

For the hPNE mark-resight framework, sampling is with replacement for the left- and right-
side datasets. The right-side analysis consisted of 49 individual photographs, with 26 photos of
10 resighted animals for the m = 27 artificially marked individuals and 23 photos of the n = 13
naturally marked individuals. The left-side analysis consisted of 42 individual photographs,
with 18 photos of 9 resighted animals for the m = 27 artificially marked individuals and 24 pho-
tos of the n = 14 naturally marked individuals. In both analyses, DIC indicated strong support
for the individual heterogeneity models (Table C in S3 Appendix). The hPNE point estimates
for the right-side (55 bobcats) and left-side (60 bobcats) datasets were similar to the other esti-
mators, but precision was markedly improved (Table 1). Percent confidence interval lengths
for the traditional mark-recapture and mark-resight estimators all exceeded 100%, but the per-
cent highest posterior density interval lengths for hPNE were 49% and 57% for the right- and
left-side analyses, respectively.

The effective study area size ranged from 96.2 km* derived from the radius of the average
bobcat home range, to 119.1 km” derived from the diameter of the average home range. Densi-
ty point estimates ranged from 0.37-0.62 and 0.30-0.50 bobcats per km? with the study areas
defined by the radius and diameter of an average bobcat home range, respectively (Table 1).

Discussion

The unique design of our remote camera study with an ongoing GPS telemetry study enabled
us to compare the use of mark-resight and mark-recapture frameworks to estimate the abun-
dance and density of a fragmentation-sensitive carnivore, the bobcat in urban southern Califor-
nia. Although the datasets were different with respect to how natural marks and artificial
marks were handled, or whether sampling was allowed to be with or without replacement dur-
ing the study period, we found traditional mark-recapture and PNE mark-resight estimators
performed similarly. However, because the hybrid mark-resight estimator (hPNE) utilized the
most information from the data, it outperformed the other estimators with respect

to precision.

Our estimates of bobcat density from hPNE (0.46 to 0.62 per km?) were slightly higher than
estimates for other study areas in the region (0.25 to 0.42 bobcats/km?) using non-invasive scat
survey mark-recapture methods [21]. Ruell et al. [21] suggested that relatively low densities
could be due to a recent notoedric mange epizootic in their bobcat population, and that previ-
ous densities in the area were suspected to be > 0.6 km” as estimated from radio-telemetry
data. This suggests that the densities we estimated from our camera trap study area were rea-
sonable and within the bounds of similar density estimates for bobcats in the region generated
with other approaches.

In a non-invasive remotely-triggered camera study, both the mark-resight and the mark-re-
capture frameworks present advantages and disadvantages. If animals can be individually iden-
tified via natural pelage markings, the mark-recapture framework presents a clear advantage
because animals may never need to be physically handled. In our study, however, we were lim-
ited to a single camera at each station and thus needed to split our data because we could not
reliably match right- and left-side photos due to asymmetrical pelt patterns; this resulted in
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lower sample sizes and decreased precision. Another drawback of separate left- and right-sided
analyses is that they result in two abundance estimates for the same population. In practice, a
single estimate is typically preferred for management, and there is no single "correct" method
for obtaining one. The simplest options include a variance-weighted average of the left- and
right-sided abundance estimates or selecting the estimate with the highest precision. A recently
developed statistical method now allows integrated mark-recapture analyses with bilateral
photo-identification records [27,37], but we did not utilize these models because they have yet
to be extended to allow for individual variation in parameters (but see [38]). A dual camera
trap setup [10,26] would have enabled matching of right- and left-side photos, likely increasing
capture probability and precision. Additionally, increasing the density of camera traps on the
landscape, and including multiple trap sites per smallest female home range [39,40], would
help achieve greater precision.

In comparison, under the mark-resight framework, animals need to be marked prior to con-
ducting independent resighting surveys. If the premarking involves physical capture and artifi-
cial marking, as was the case in our studyj, it is typically more invasive and costly than the
mark-recapture framework if all animals can be individually identified via natural markings.
However, if researchers are already handling animals, for example to deploy telemetry collars,
then the concurrent use of remote cameras to acquire non-invasive resightings presents a viable
opportunity for the use of the mark-resight framework for abundance estimation. When com-
plete resighting histories are known for the artificially marked subset of the population, includ-
ing those never photographed by camera traps, mark-resight methods are more robust to
individual sighting heterogeneity than traditional mark-recapture. Unmodeled individual het-
erogeneity will often result in underestimation of abundance [8,31]. The minimum number of
individuals known to be alive during our study was 41 bobcats, and the lower bounds for the
mark-recapture estimates could be indicative of bias induced by unmodeled
individual heterogeneity.

The mark-resight framework offers other benefits. First, the ability to use one camera to de-
tect artificial marks in a mark-resight study, as opposed to two cameras to detect bilaterally
asymmetrical natural markings in a mark-recapture study, is another potential advantage of
the mark-resight framework. The process of matching marks (natural or artificial) among pho-
tos may also be less intensive, because only those animals who were captured and marked in
the initial capture session need to be identified, as opposed to the mark-recapture estimators
that require individual identification of every photograph. Finally, sampling can be with re-
placement for the PNE and hPNE mark-resight estimators, so delineation of secondary sam-
pling occasions is not necessary. This is natural for camera trap data; generally cameras traps
are placed on the landscape and run for the duration of the study period, with no accounting
for distinct sampling occasions without replacement. Sampling with replacement allows all
identifiable photographs to be used, a contrast with the mark-recapture estimators, in which
multiple detections of the same individual within the same sampling occasion are discarded
(i.e., only one detection of an individual within a sampling occasion is used by the estimator).

As was demonstrated by the hPNE mark-resight results, we found there may be notable ad-
vantages to conducting an independent survey (e.g., via physical trapping) prior to initiating
camera trap surveys, even when all individuals in the population are naturally marked. By hav-
ing a subset of the population for which complete encounter histories are known, including
those never photographed by a camera trap, precision can be greatly improved and bias due to
individual sighting heterogeneity reduced. In our case study, we found that traditional mark-
recapture and mark-resight methods produced insufficient sample sizes to achieve desirable
levels of precision. However, when integrated using the new hPNE model, the information af-
forded by the artificially-marked individuals and natural pelt patterns of individuals without
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artificial marks achieved a desirable level of precision. When all individuals in a population are
naturally marked and it is difficult to achieve sufficient sample sizes from camera surveys alone
(e.g., due to the rarity or elusiveness of the focal species), then investment in an independent
non-camera survey may provide critical information that will improve inference about
population size.

Finally, spatial capture-recapture methods (e.g., [41,42]) are becoming increasingly popular
for the analysis of felid camera-trap data. While analogous mark-resight methods were unde-
veloped at the time of this research, spatial mark-resight models have since started to emerge
[43,44]. These approaches are quickly becoming the standard for estimating the density of rare
and elusive carnivores, and they alleviate the need for ad-hoc effective study area calculations
for density estimation (such as those used in this paper) [45]. While many of our findings are
relevant to both non-spatial and spatially-explicit approaches, a similar comparison of spatial
mark-recapture and spatial mark-resight methods remains a promising avenue for
future research.

Supporting Information

S1 Appendix. BUGS model specification code for implementing the hybrid Poisson log-
normal mark-resight abundance estimator (hPNE). This file also contains Figure A and
Figure B. Models include individual sighting heterogeneity (Figure A) or no individual sighting
heterogeneity (Figure B).

(DOCX)

S2 Appendix. This file contains Table A and Table B. Table A, Examination of closure as-
sumption for mark-recapture analysis using left-sided data. Table B, Examination of closure as-
sumption for mark-recapture analysis using right-sided data.

(DOCX)

S3 Appendix. This file contains Tables A-C. Table A, Individual model results for the mark-
recapture analysis. Table B, Individual model results for the mark-resight analysis. Table C, In-

dividual model results for the hybrid mark-resight analysis.
(DOCX)

Acknowledgments

Disclaimer: The findings and conclusions in the paper are those of the authors and do not nec-
essarily represent the views of any government agency. Any use of trade, product, or firm
names does not imply an endorsement by the U.S. Government.

We thank the organizations that provided property access and other logistical support, in-
cluding California State Parks, California Department of Fish and Wildlife, City of Irvine, City
of Laguna Woods, City of Newport Beach, Irvine Ranch Conservancy, Laguna Canyon Foun-
dation, Orange County Harbors, Beaches, and Parks, Pelican Hill Golf Club, San Joaquin Wild-
life Sanctuary, Shady Canyon Golf Club, Strawberry Farms Golf Club, Transportation
Corridor Agencies, University of California, Irvine, and U.S. Fish and Wildlife Service. We
thank T. Smith and The Nature Conservancy for support of this project and carnivore research
throughout Orange County. For assistance in helping collect and organize data for this project,
we thank G. Geye, C. Haas, C. Laudidio, R. Mowry, B. Nerhus, D. Newell, M. Ordefiana, R.
Sosa, and G. Turschak. For veterinary support for physically captured animals, we thank S.
Weldy and K. Krause.

PLOS ONE | DOI:10.1371/journal.pone.0123032 March 30, 2015 11/183


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123032.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123032.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123032.s003

@'PLOS ‘ ONE

Mark-Recapture and Mark-Resight Methods for Estimating Abundance

Author Contributions

Conceived and designed the experiments: RSA BTM LML EEB KRC. Performed the experi-
ments: RSA BTM LML EEB KRC. Analyzed the data: RSA BTM. Contributed reagents/materi-
als/analysis tools: RSA BTM LML EEB KRC. Wrote the paper: RSA BTM LML EEB KRC.

References

1. Noss RF, Quigley HB, Hornocker MG, Merrill T, Paquet PC. Conservation biology and carnivore con-
servation in the Rocky Mountains. Conserv Biol. 1996; 10: 949-963.

2. Crooks KR. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol.
2002; 16:488-502.

3. Balme GA, Hunter LTB, Slotow R. Evaluating methods for counting cryptic carnivores. J Wildl Manage.
2009; 73:433-441.

4. Cutler TL, Swann DE. Using remote photography in wildlife ecology: a review. Wildl Soc Bull. 1999; 27:
571-581.

5. McCallum J. Changing use of camera traps in mammalian field research: habitats, taxa and study
types. Mamm Rev. 2013; 43: 196-206.

6. Moruzzi TL, Fuller TK, DeGraaf RM, Brooks RT, Li W. Assessing remotely-triggered cameras for sur-
veying carnivore distribution. Wildl Soc Bull. 2002; 30: 380—-386.

7. O’Connell AF, Nichols JD, Karanth KU. Camera traps in animal ecology: methods and analyses. New
York: Springer; 2011.

8. Otis DL, Burnham KP, White GC, Anderson DR. Statistical inference from capture data on closed ani-
mal populations. Wildlife Monogr. 1978; 62: 7—135.

9. White GC, Shenk TM. Population estimation with radio-marked animals. In: Millspaugh J, Marzluff JM,
editors. Radio tracking and animal populations. San Diego: Academic Press; 2001. p. 329-350.

10. Karanth KU. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture
models. Biol Conserv. 1995; 71: 333—-338.

11. Dillon A, Kelly MJ. Ocelot Leopardus pardalis in Belize: the impact of trap spacing and distance moved
on density estimates. Oryx. 2007; 41: 469-477.

12. Dillon A, Kelly MJ. Ocelot home range, overlap and density: comparing radio telemetry with camera
trapping. J Zool. 2008; 275: 391-398.

13. Soisalo MK, Cavalcanti S. Estimating the density of a jaguar population in the Brazilian Pantanal using
camera-traps and capture-recapture sampling in combination with GPS radio-telemetry. Biol Conserv.
2006; 129: 487-496.

14. Jackson RM, Roe JD, Wangchuk R, Hunter DO. Estimating snow leopard population abundance using
photography and capture-recapture techniques. Wildl Soc Bull. 2006; 34: 772-781.

15. Heilbrun RD, Silvy NJ, Peterson MJ, Tewes ME. Estimating bobcat abundance using automatically trig-
gered cameras. Wildl Soc Bull. 2006; 34: 69-73.

16. McClintock BT, White GC. From NOREMARK to MARK: software for estimating demographic parame-
ters using mark—resight methodology. J Ornithol. 2012; 152 Supplement 2: S641-S650.

17. George SL, Crooks KR. Recreation and large mammal activity in an urban nature reserve. Biol Con-
serv. 2006; 133:107-117.

18. Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, et al. A southern California free-
way is a physical and social barrier to gene flow in carnivores. Mol Ecol. 2006; 15: 1733—1741. PMID:
16689893

19. Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, et al. Effects of urbanization and
habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol. 2003; 17: 566-576.

20. Tigas LA, Van Vuren DH, Sauvajot RM. Behavioral responses of bobcats and coyotes to habitat frag-
mentation and corridors in an urban environment. Biol Conserv. 2002; 108: 299-306.

21. Ruell EW, Riley SPD, Douglas MR, Pollinger JP, Crooks KR. Estimating bobcat population sizes and
densities in a fragmented urban landscape using noninvasive capture-recapture sampling. J Mammal.
2009; 90: 129-135.

22. Larrucea ES, Serra G, Jaeger MN, Barrett RH. Censusing bobcats using remote cameras. WN Am

Naturalist. 2007; 67: 538—-548.

PLOS ONE | DOI:10.1371/journal.pone.0123032 March 30, 2015 12/183


http://www.ncbi.nlm.nih.gov/pubmed/16689893

@' PLOS ‘ ONE

Mark-Recapture and Mark-Resight Methods for Estimating Abundance

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

Lyren LM, Turschak GM, Ambat ES, Haas CD, Tracey JA, Boydston EE, et al. Carnivore activity and
movement in a southern California protected area, the North/Central Irvine Ranch. Sacramento: U.S.
Geological Survey, Western Ecological Research Center; 2006.

Zielinski WJ, Kucera TE, Halfpenny JC. Definition and distribution of sample units. In: Zielinski WJ,
Kucera TE, editors. American marten, fisher, lynx, and wolverine: survey methods for their detection.
Albany: U.S. Forest Service; 1995. p. 17-24.

Heilbrun RD, Silvy NJ, Tewes ME, Peterson MJ. Using automatically triggered cameras to individually
identify bobcats. Wildl Soc Bull. 2003; 31: 748—755.

Karanth KU, Nichols JD. Estimation of tiger densities in India using photographic captures and recap-
tures. Ecology. 1998; 79: 2852-2862.

McClintock BT, Conn PB, Alonso RS, Crooks KR. Integrated modeling of bilateral photo-identification
data in mark-recapture analyses. Ecology. 2013; 94: 1464—1471. PMID: 23951706

White GC, Burnham KP. Program MARK: survival estimation from populations of marked animals. Bird
Study 46 Supplement. 1999; S120-S139.

Pledger S. Unified maximum likelihood estimates for closed capture-recapture models using mixtures.
Biometrics. 2000; 56: 434—442. PMID: 10877301

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoret-
ic approach. New York: Springer Verlag; 2002.

McClintock BT, White GC, Antolin MF, Tripp DW. Estimating abundance using mark-resight when sam-
pling is with replacement or the number of marked individuals is unknown. Biometrics. 2009; 65: 237—
246.doi: 10.1111/].1541-0420.2008.01047.x PMID: 18479484

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit.
J R Stat Soc Series B Stat Methodol. 2002; 64: 583—639.

Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique, and future direc-
tions. Stat Med. 2009; 28: 3049-3067. doi: 10.1002/sim.3680 PMID: 19630097

Powell RA. Animal home ranges and territories and home range estimators. In: Boitani L, Fuller TK, edi-
tors. Research techniques in animal ecology: controversies and consequences. New York: Columbia
University Press; 2000. p. 65-110.

SCAG. Land-use data for Orange County, California. Los Angeles: Southern California Association of
Governments; 2005.

Bowden DC, Kufeld RC. Generalized mark-sight population size estimation applied to Colorado
moose. Jd Wildl Manage. 1995; 59: 840-851.

Bonner SJ, Holmberg J. Mark-recapture with multiple, non-invasive marks. Biometrics. 2013; 69:
766-775. doi: 10.1111/biom.12045 PMID: 23845216

McClintock BT, Bailey LL, Dreher BP, Link WA. Probit models for capture-recapture data subject to im-
perfect detection, individual heterogeneity, and misidentification. Ann Appl Stat. 2014; 8: 2461-2484.

Karanth KU, Nichols JD, Kumar NS. Estimating tiger abundance from camera trap data: field surveys
and analytical issues. In: O'Connell AF, Nichols JD, Karanth KU, editors. Camera traps in animal ecolo-
gy: methods and analyses. New York: Springer; 2011. p. 97-117.

Zimmermann F, Breitenmoser-Wiirsten C, Molinari-Jobin A, Breitenmoser U. Optimizing the size of the
area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of pho-
tographic capture-recapture. Integr Zool. 2013; 8:232-243. doi: 10.1111/1749-4877.12017 PMID:
24020463

Efford M, Borchers DL, Byron AE. Density estimation by spatially explicit capture-recapture: likelihood-
based methods. In: Thomson DL, Cooch EG, Conroy MJ, editors. Modeling demographic processes in
marked populations. New York: Springer; 2009. p. 255-369.

Royle JA, Karanth KU, Gopalaswamy AM, Kumar NS. Bayesian inference in camera trapping studies
for a class of spatial capture-recapture models. Ecology. 2009; 90: 3233-3244. PMID: 19967878

Chandler RB, Royle JA. Spatially explicit models for inference about density in unmarked or partially
marked populations. Ann Appl Stat. 2013; 7: 936-964.

Sollmann R, Gardner B, Parsons AW, Stocking JJ, McClintock BT, Simons TR, et al. A spatial mark-
resight model augmented with telemetry data. Ecology. 2013; 94: 553-559. PMID: 23687880

Royle JA, Chandler RB, Sollmann R, Gardner B. Spatial capture-recapture. Waltham: Academic
Press; 2013.

PLOS ONE | DOI:10.1371/journal.pone.0123032 March 30, 2015 13/13


http://www.ncbi.nlm.nih.gov/pubmed/23951706
http://www.ncbi.nlm.nih.gov/pubmed/10877301
http://dx.doi.org/10.1111/j.1541-0420.2008.01047.x
http://www.ncbi.nlm.nih.gov/pubmed/18479484
http://dx.doi.org/10.1002/sim.3680
http://www.ncbi.nlm.nih.gov/pubmed/19630097
http://dx.doi.org/10.1111/biom.12045
http://www.ncbi.nlm.nih.gov/pubmed/23845216
http://dx.doi.org/10.1111/1749-4877.12017
http://www.ncbi.nlm.nih.gov/pubmed/24020463
http://www.ncbi.nlm.nih.gov/pubmed/19967878
http://www.ncbi.nlm.nih.gov/pubmed/23687880

