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Abstract Local adaptation influences plant species’

responses to climate change and their performance in

ecological restoration. Fine-scale physiological or pheno-

logical adaptations that direct demographic processes may

drive intraspecific variability when baseline environmental

conditions change. Landscape genomics characterize

adaptive differentiation by identifying environmental dri-

vers of adaptive genetic variability and mapping the asso-

ciated landscape patterns. We applied such an approach to

Sphaeralcea ambigua, an important restoration plant in the

arid southwestern United States, by analyzing variation at

153 amplified fragment length polymorphism loci in the

context of environmental gradients separating 47 Mojave

Desert populations. We identified 37 potentially adaptive

loci through a combination of genome scan approaches.

We then used a generalized dissimilarity model (GDM) to

relate variability in potentially adaptive loci with spatial

gradients in temperature, precipitation, and topography.

We identified non-linear thresholds in loci frequencies

driven by summer maximum temperature and water

stress, along with continuous variation corresponding to

temperature seasonality. Two GDM-based approaches for

mapping predicted patterns of local adaptation are com-

pared. Additionally, we assess uncertainty in spatial inter-

polations through a novel spatial bootstrapping approach.

Our study presents robust, accessible methods for deriving

spatially-explicit models of adaptive genetic variability in

non-model species that will inform climate change mod-

elling and ecological restoration.
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Introduction

Evidence for local adaptation is widespread among plant

taxa (Leimu and Fischer 2008; Alberto et al. 2013). There

is growing recognition that adaptive genetic variability

influences the responses of species to climate change

(Davis and Shaw 2001; Jump and Peñuelas 2005) and the

performance of seed used in ecological restoration (Huf-

ford and Mazer 2003; Mijangos et al. 2015). Consequently,

understanding the scale of local adaptation and developing

spatial models to visualize patterns of adaptive genetic

variability constitute major interdisciplinary challenges

with practical implications (Holderegger et al. 2010;

Schoville et al. 2012). Characterizing local adaptation with

molecular markers may provide cost and time advantages

over common garden experiments. However, this approach

requires multivariate models that incorporate spatial

covariance in both adaptive loci and environmental gradi-

ents (Thomassen et al. 2010; Fitzpatrick and Keller 2015).

Recent studies highlight promising new avenues for visu-

alizing adaptive genetic variability across the landscape

Electronic supplementary material The online version of this
article (doi:10.1007/s10592-015-0741-1) contains supplementary
material, which is available to authorized users.

& Daniel F. Shryock

dshryock@usgs.gov

1 U.S. Geological Survey, Western Ecological Research

Center, 160 North Stephanie Street, Henderson, NV 89014,

USA

2 University of Colorado, Boulder, CO 80309, USA

3 U.S. Geological Survey, Colorado Plateau Research Station,

Southwest Biological Science Center,

P.O. Box 5614, Flagstaff, AZ 86011, USA

123

Conserv Genet (2015) 16:1303–1317

DOI 10.1007/s10592-015-0741-1

http://dx.doi.org/10.1007/s10592-015-0741-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10592-015-0741-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10592-015-0741-1&amp;domain=pdf


(Vandergast et al. 2008; Fitzpatrick and Keller 2015). Here,

we extend these approaches to characterize adaptive

genetic variability in Mojave Desert populations of

Sphaeralcea ambigua (Malvaceae), a species important for

restoring severely degraded desert landscapes.

Predicting species’ responses to climate change is

necessary for developing conservation strategies (Thuiller

et al. 2008). Multiple factors complicate modelling of

future range shifts, including leading-edge versus trailing-

edge dynamics, migration rates, and context-dependent

biotic interactions (Fordham et al. 2012; Svenning and

Sandel 2013). Local adaptation also may drive

intraspecific variability in species’ responses to climate

change at the population level (Davis and Shaw 2001;

Aitken et al. 2008; Jay et al. 2012), as altered climatic

means and extremes interact with species’ life-history

processes to shape local demographic trajectories

(Parmesan 2006; Reusch and Wood 2007). Long-term

outcomes depend in part on capacities for phenotypic

plasticity and long-distance dispersal (Davis and Shaw

2001; Nicotra et al. 2010). However, adaptive genetic

variability may lead to phenological or physiological

asynchronies under novel climates (Valladares et al.

2014), or, conversely, provide the basis for evolution

(Jump and Peñuelas 2005; Alberto et al. 2013). Adapta-

tion is dictated by the interplay between gene flow and

natural selection (Rieseberg and Burke 2001; Ellstrand

2014), and expressed as spatial variability in adaptive

allele frequencies among populations (Manel et al. 2010;

Schoville et al. 2012). In this context, landscape genomics

seeks to identify environmental drivers of adaptive

genetic variability and map patterns of local adaptation,

enabling intraspecific-level predictions (Fitzpatrick and

Keller 2015).

Landscape genomics is also broadly suited to guide

ecological restoration. Widespread habitat changes caused

by anthropogenic factors (Vitousek et al. 1997), often

attended by novel disturbance regimes (Brooks et al. 2004),

have greatly increased the need for ecological restoration

across a range of ecosystems. Despite recognition that local

ecotypes often have fitness advantages (Leimu and Fischer

2008), limited availability of local seed increases the

potential for introducing genetic material from distant or

unknown provenances during restoration (Johnson et al.

2010). Planting maladapted germplasm can result in low

population fitness due to multiple processes: founder effects

if seed stock is from a limited number of sources; out-

breeding depression following intraspecific hybridization

between indigenous and imported genotypes; and genetic

swamping, leading to the replacement of local ecotypes

(Lesica and Allendorf 1999; Hufford and Mazer 2003;

McKay et al. 2005). By identifying drivers and patterns of

local adaptation, landscape genomics can provide the

genetic information needed to inform seed sourcing strate-

gies (Breed et al. 2013; Mijangos et al. 2015).

Molecular markers have been used to characterize

adaptation of alpine species (e.g., Manel et al. 2012) and

forest trees (e.g., De Kort et al. 2014) to precipitation and

temperature in numerous studies. Although desert species

show marked phenological responses to environmental

triggers (Beatley 1974) and narrow germination require-

ments (Meyer and Pendleton 2005), ecological drivers

and patterns of intraspecific variability are little under-

stood (but see Sandquist and Ehleringer 1997; Meyer and

Pendleton 2005; Jones et al. 2014). Heightened climatic

extremes (Dai 2013; IPCC 2013) and a novel fire regime

(Brooks and Minnich 2006) both threaten the Mojave

Desert over the next century, increasing the need for

landscape genomics to inform predictive modelling and

restoration decision making. While recent studies have

elucidated patterns of genetic diversity and divergence for

Mojave Desert fauna (Hagerty et al. 2011; Vandergast

et al. 2013), genetic assessments are largely unavailable

for flora.

Genome scans are a popular means for characterizing

adaptive genetic variability among populations (e.g., Joost

et al. 2007; Foll and Gaggiotti 2008; Poncet et al. 2010;

Evans et al. 2014). Ecologically relevant loci (i.e., those

linked to genetic regions under diversifying or balancing

selection) are typically identified in two ways: (a) outlier

locus detection, which identifies markers showing signifi-

cantly higher genetic differentiation than expected under

neutrality; and (b) direct identification of gene-environ-

ment correlations through modeling changes in allele fre-

quencies along environmental gradients (Holderegger et al.

2008; Schoville et al. 2012). Developing landscape-scale

spatial predictions for patterns of local adaptation requires

accounting for covariance in both adaptive loci and envi-

ronmental gradients, which is best accomplished through

multivariate models (Thomassen et al. 2010; Fitzpatrick

and Keller 2015). However, commonly used multivariate

techniques, including constrained ordinations (redundancy

analysis and canonical correspondence analysis) and

canonical correlation, assume linear or uni-modal response

structures that may limit inferences (McCune et al. 2002).

A recent distance-based approach, generalized dissimilarity

modeling (GDM), bridges this gap by modelling changes in

adaptive allele frequencies as nonlinear functions of eco-

logical covariates (Ferrier et al. 2002, 2007). GDMs

account for both nonlinearity and non-stationarity (varia-

tion in the rate) in responses of allele frequencies to eco-

logical gradients, which frequently characterize such

associations (Bothwell et al. 2013; Fitzpatrick and Keller

2015). GDMs also enable spatial interpolations for
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predicted patterns of local adaptation (Fitzpatrick and

Keller 2015).

In this study, we demonstrate novel techniques for

linking genome scans with a spatially-explicit GDM, and

for visualizing uncertainty in multivariate spatial interpo-

lations, using a dataset of amplified fragment length

polymorphism (AFLP) markers typed in Mojave Desert

populations of S. ambigua (Malvaceae). This species pro-

vides forage for the federally-listed desert tortoise (Go-

pherus agassizii; Barboza 1995), whose re-use of habitat

burned by wildfire coincides with S. ambigua’s coloniza-

tion (Drake et al. 2015). Hence, S. ambigua is particularly

desirable for restoration. Our objectives were to: (1)

identify ecologically relevant loci and relate these to

important environmental gradients; and (2) develop spatial

interpolations of adaptive genetic variability to guide

restoration planning and predictive modelling.

Materials and methods

Study site, study species and genotyping

The Mojave Desert spans approximately 150,000 km2 in

the southwestern United States, forming a portion of the

‘‘Basin and Range’’ province characterized by north to

south trending mountain ranges and interlaying basins

(MacMahon 2000). Alluvial fans, bajadas, playas, and

washes are common geomorphic features. Annual precip-

itation ranges from\50 to 300 mm (averaging 137 mm)

with high inter-annual variability and a large proportion of

winter rainfall (Hereford et al. 2004). However, the pro-

portion of summer precipitation increases from west to

east. The El Niño/Southern Oscillation (ENSO) drives

episodic variability in the timing and amount of precipi-

tation several times per decade. Temperatures range from

\0 �C in winter to over 50 �C in summer (Turner 1994).

Sphaeralcea ambigua is a short-lived, drought-decidu-

ous, insect-pollinated perennial forb or subshrub with a

wide distribution across the Mojave Desert and surround-

ing ecoregions. Plants typically flower in early spring

(February–March) and senesce during hot, mid-summer

months. Green leaf tissue from 10 to 15 individual S.

ambigua plants spaced at least 10 m apart was collected

from 47 populations throughout the Mojave Desert ecore-

gion (Fig. 1; Online Resource 1). Leaf tissue was stored

within sealed bags containing desiccant. GPS coordinates

were recorded for each sampling location.

Genomic DNA from 446 S. ambigua plants was extracted

using the MagAttract 96 Miniprep Core Kit (Qiagen

Valencia, CA, USA) for AFLP genotyping. DNA (300 ng)

was digestedwith three units each of EcoRI andMspI and 19

NEB #2 buffer in 40 ll reactions. After 1 h of incubation at

37 �C, the following ligation reagents, in a 10 ll mixture,

were added to the digestion reaction and incubated for 3 h at

16 �C: 1.5 lM of double-stranded EcoRI adapter (combi-

nation of oligos 50_CTCGTAGACTGCGTACC30_ and

50_AATTGGTACGCAGTCTAC30_), 15 lM of double-

stranded MspI adapter (combination of oligos 50GACGAT
GAGTCTAGAA03_ and 50CGTTCTAGACTCATC03), 19
ligase buffer, and 0.1 ll of T4 ligase (NEB). The preselective
AFLP amplification was carried out in a 20 ll reaction

mixture containing 30 mM Tricine, 50 mM KCl, 2 mM

MgCl2, 5 % acetamide, 10 mM of each dNTP, 0.2 mM of

each EcoRI primer (50GACTGCGTACCAATTCA03) and
MspI primer (50GATGAGTCTAGAACGGA03), 0.6 ll of
Taq polymerase, and 2 ll of the ligation reaction mixture

using the following PCRprogram: 35 cycles of 30 s at 94 �C,
30 s at 55 �C, and 1 min at 72 �C. The selective AFLP

amplifications were carried out in the same manner as the

preselective reactions, except that 2 ll of a 1:20 dilution of

the preselective amplification productwas used as a template

against four EcoRI–MspI primer combinations: Eact_Ma-

gat, Eatg_Matga, Eatc_Maaac, Eaca_Macc. Selectively

amplified PCR products were separated on a 3730 DNA

Analyzer (Applied Biosystems, Foster City, CA, USA) at

Arizona State University. Electropherograms were viewed

with GeneMapper software (Applied Biosystems), and all

readily scorable, segregating fragments (loci) between 50

and 500 bp were manually typed as present (1) or absent (0)

for each individual. A total of 153 AFLP loci were scored.

Characterizing environmental variability

We assembled 11 climatic and topographic layers in GIS as

potential gradients driving adaptive genetic differentiation

(Table 1). Winter precipitation, summer precipitation,

winter minimum temperature, and summer maximum

temperature were derived from PRISM climatic normals

for the period 1981–2010 at a spatial resolution of 800 m2

(Daly et al. 2008). Elevation, slope, and topographic index

were derived from a 30 m digital elevation model and

subsequently upscaled to a 1 km2 resolution (National

Elevation Dataset, http://ned.usgs.gov/). Three indices

derived from the moderate-resolution imaging spectrora-

diometer (MODIS) satellite—also scaled to a 1 km2 reso-

lution—expressed seasonal surface temperature range (i.e.,

temperature seasonality), surface texture, and water stress

(Inman et al. 2014; Table 1). MODIS indices were aver-

aged across years from 2001 to 2010. We calculated

pairwise correlation coefficients between all variables and

excluded elevation a priori due to a strong correlation

(r = 0.95) with summer maximum temperature.
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Statistical analysis

Population structure

Population differentiation was characterized using analysis

of molecular variance (AMOVA) with 9999 permutations.

AMOVA partitions variability within- and among-popula-

tions and results in phi-statistics, which are analogues of

Wright’s F-statistic for binary (dominant) data. Calcula-

tions were performed in GenAlEx version 6.501 (Peakall

and Smouse 2012).

Identifying potentially adaptive loci

AFLP loci of potential ecological relevance (i.e., loci

putatively linked to genetic factors contributing to adaptive

Fig. 1 Genotyped source

populations of Sphaeralcea

ambigua distributed across the

Mojave Desert ecoregion in

California and Nevada, USA

Table 1 Environmental variables derived for analysis of adaptive genetic variability in Sphaeralcea ambigua at a 1 km2 spatial scale

Environmental layer Description and source Code

Elevation (m) 30 m digital elevation model (National Elevation Dataset, http://ned.usgs.gov/) ELEV

Slope (�) Rise in degrees, derived from 30 m digital elevation model (National Elevation Dataset,

http://ned.usgs.gov/)

SLP

Winter precipitation (mm) Average precipitation received from October to March, derived from PRISM

1981–2010 climatic normal (Daly et al. 2008, http://www.prism.oregonstate.edu/)

WP

Summer precipitation (mm) Average precipitation received from April to September, derived from PRISM

1981–2010 climatic normal (Daly et al. 2008, http://www.prism.oregonstate.edu/)

SP

Winter minimum

temperature (�C)
Average temperature minimum from November to February, derived from PRISM

1981–2010 climatic normal (Daly et al. 2008, http://www.prism.oregonstate.edu/)

WMT

Summer maximum

temperature (�C)
Average temperature maximum from July to September, derived from PRISM

1981–2010 climatic normal (Daly et al. 2008, http://www.prism.oregonstate.edu/)

SMT

Precipitation ratio Ratio of winter to summer precipitation, calculated from WP and SP layers PRT

Seasonal thermal range

(temperature seasonality)

Difference between summer and winter land surface temperature derived from MODIS

MOD11A1 product (available from Inman et al. 2014)

STH

Topographic index Area of hillslope per unit contour length draining into a given cell, following Moore

et al. 1991 (available from Inman et al. 2014)

TOPIND

Water stress index Shortwave and infrared water stress index (SIWSI; Fensholt and Sandholt 2003)

derived from MODIS MOD09A1 product (available from Inman et al. 2014)

SWS

Thermal inertia (soil texture

index)

Difference in daytime and nighttime surface temperatures from MODIS MOD11A1

(available from Inman et al. 2014)

TEXT
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differentiation) were identified with two approaches:

(a) outlier locus detection, which identifies a subset of loci

that exhibit extreme differentiation relative to the full

marker set, a pattern better explained by selection than

drift; and (b) landscape genetics, which directly correlates

environmental variability with allele frequency variation.

Loci identified as potentially adaptive in either approach

were combined into a matrix for multivariate analyses and

are hereafter referred to as ‘‘potentially adaptive loci.’’

Outlier loci were identified using a hierarchical Baye-

sian approach based on the method of Beaumont and

Balding (2004) and implemented in the program BayeScan

V.2.1 (Foll and Gaggiotti 2008). This program estimates

the posterior probability that a given locus is under selec-

tion by decomposing FST into population and locus-specific

contributions in a logistic regression, assuming departure

from neutrality when the locus-specific component best

explains the observed pattern of genetic diversity. We

performed three independent BayeScan iterations with

sample locations as populations (n = 47). Loci under

diversifying selection (q\ 0.05) across all three runs were

considered potentially adaptive. Each independent iteration

comprised 20 pilot runs of 5000 and a 50,000 data burn in.

While the genus Sphaeralcea is inferred to be predomi-

nantly allogamous (Hubbard et al. 1993), the inbreeding

coefficient was allowed to vary between 0.0 and 1.0 to

avoid biased FST estimation.

In the landscape genetics approach, population-level

loci frequencies, calculated as the proportion of plants with

a band present at each AFLP locus per sampling location,

were tested for correlations with environmental predictors

(sensu Manel et al. 2012). Outlying Mean Index ordination

(OMI; Dolédec et al. 2000), as implemented in the R

package ‘‘ade4’’ (Dray and Dufour 2007), was used to

identify loci showing significant environmental correla-

tions. OMI is a multivariate, non-parametric method for

characterizing niche differentiation and can be used in a

landscape genomics context to identify loci showing fre-

quency clines along ecological gradients that deviate from

chance expectation. OMI can identify both linear and

nonlinear response distributions. Significance of correla-

tions between loci and environmental gradients were

assessed via permutation tests, and further adjusted using a

false discovery rate (FDR) correction (Benjamini and

Hochberg 1995). Loci showing significant (q\ 0.05) cor-

relations after P value correction were considered poten-

tially adaptive.

Associations between environmental variables and

potentially adaptive loci were further verified using general

linear models (GLMs) with quasi-binomial errors to

account for overdispersion in residuals. Variables were

retained in reduced models based on the change in

deviance from models fitted with and without each term.

The deviance explained by each model was calculated as

1 - (residual deviance/null deviance). Significance was

assessed via likelihood-ratio tests comparing reduced and

null (intercept only) models.

Characterizing adaptive variability

across the landscape

Multivariate models of adaptive genetic variability

Although exceptions exist, neutral genetic processes are

expected to influence the entire genome (e.g., isolation-

by-distance), while selection influences only certain

regions. Consequently, adaptive loci should exhibit spa-

tial autocorrelation that differs from neutral loci and

corresponds to selective environmental gradients (Manel

et al. 2010). To test these assumptions, we computed the

following Mantel or partial-Mantel tests with 9999 per-

mutations: genetic distance by geographic distance,

genetic distance by environmental distance, genetic dis-

tance by environmental distance—geographic distance

(partial-mantel), genetic distance by geographic dis-

tance—environmental distance (partial-mantel), and geo-

graphic distance by environmental distance. Tests were

computed separately for neutral and potentially adaptive

loci, where ‘‘neutral’’ loci include those not identified as

potentially adaptive. Genetic dissimilarities were calcu-

lated as pairwise population Upt matrices in GenAlex

version 6.501 (Peakall and Smouse 2012), while a

Euclidean distance metric was used to calculate geo-

graphic (based on latitude and longitude) and environ-

mental (including all predictors from Table 1) distances.

Additionally, we computed Mantel correlograms for

neutral and adaptive loci to examine correlations in loci

frequencies between populations as a function of

increasing geographic distance (Legendre and Legendre

2012). Calculations were performed using the R package

‘‘vegan’’ (Oksanen et al. 2013).

Potentially adaptive loci were analyzed with a multi-

variate generalized dissimilarity model (GDM; Ferrier

et al. 2002, 2007) implemented in the R package ‘‘Gdm01’’

(Manion et al. 2014). GDM is a distance-based approach

accommodating non-linear relationships between compo-

sitional dissimilarities and ecological gradients, along with

non-stationarity (variation) in the rate of compositional

change (Ferrier et al. 2007; Fitzpatrick et al. 2013). This is

accomplished through monotonic I-splines with two key

properties: (1) the maximum height of each curve repre-

sents the total amount of compositional change explained

by each ecological predictor; and (2) the slope of each

curve indicates the rate of compositional change along the

predictor’s range (Fitzpatrick et al. 2013; Fitzpatrick and

Keller 2015). GDM was run using the population Upt

Conserv Genet (2015) 16:1303–1317 1307

123



matrix for potentially adaptive loci as response, and

thereby expressed the rate of change in allele frequencies

with respect to environmental predictors. Significance of

the model fit was assessed through a randomization pro-

cedure which permuted genetic distances (9999 permuta-

tions; Fitzpatrick et al. 2013). To assess uncertainty in

model parameters (I-spline functions), we simulated 1000

bootstrap iterations of the GDM model leaving out 10 % of

populations and sampling without replacement from the

remainder. Standard deviations were calculated showing

the variance of model parameters between bootstrap iter-

ations and plotted as error bands for each I-spline.

Spatial interpolations

Two GDM-based interpolation methods were used to map

potentially adaptive genetic variability in S. ambigua. First,

we used the fitted GDM to directly predict pairwise genetic

dissimilarities for a uniform 10 km2 grid of points spanning

the Mojave Desert ecoregion. Values for predictor vari-

ables were extracted at each point on the grid and input to

GDM. Predicted pairwise dissimilarities were then input to

the ‘‘single species genetic divergence tool’’ from the

Genetic Landscapes GIS toolbox (Vandergast et al. 2011),

which interpolated the dissimilarities into a continuous

1 km2 raster grid through an inverse-distance-weighed

(IDW) algorithm. Interpolated dissimilarity values for each

cell on the raster grid were symbolized by color, allowing a

visualization of the change in potentially adaptive loci

frequencies through space.

The second technique involved mapping transformed

predictors (i.e., model parameters) from the fitted GDM,

which are scaled and weighted to best summarize vari-

ability in adaptive loci such that the scaled environmental

distances provide the best fit between observed and pre-

dicted genetic dissimilarities (Fitzpatrick and Keller 2015).

The fitted GDM was first used to transform environmental

predictors extracted from a uniform 2.5 km2 grid of points

spanning the Mojave Desert. Next, we performed a prin-

cipal component analysis (PCA) to reduce the transformed

predictors into three principal components expressing

major gradients of variability (sensu Fitzpatrick and Keller

2015). PCA axes were interpolated to a continuous 1 km2

raster grid using IDW. Finally, the three resulting raster

grids (PCA axes) were assigned to an RGB color palette in

ArcGIS 10.1, such that the similarity of colors in the

multiband raster corresponded to the similarity of predicted

patterns of potentially adaptive loci frequencies.

Bootstrap simulations (as outlined above) were also

used to visualize model uncertainty across the study region.

After each bootstrap iteration (n = 1000), we calculated

GDM-transformed predictors and compared the original

and bootstrapped solutions in Procrustes analysis (function

‘‘procrustes’’ in R package vegan; Oksanen et al. 2013), a

procedure for determining the similarity of two multivari-

ate configurations (Peres-Neto and Jackson 2001). Pro-

crustes errors for points on the 2.5 km2 grid were averaged,

normalized (range 0–1), and interpolated using IDW. The

multidimensional climate space represented by sampled

populations within the Mojave Desert study region was

also mapped by overlying raster layers representing each

environmental predictor.

Results

Population structure

AMOVA resulted in an overall Upt statistic of 0.16

(P\ 0.0001), indicating that 84 % of genetic variability

was partitioned within populations. Pairwise population Upt

values ranged from 0.00 to 0.41, and 94.5 % of these

values were larger than expected by chance (P\ 0.05).

Expected heterozygosity and the proportion of polymor-

phic loci for each population are provided in Online

Resource 1.

Identifying potentially adaptive loci

Eleven loci were identified through BayeScan as under

diversifying selection (Table 2). These corresponded with

5 of 31 loci showing significant (q\ 0.05) correlations to

environmental variables in OMI ordination (Online

Resource 2; Table 2), for a total of 37 potentially adaptive

loci. GLMs relating population-level allele frequencies

with environmental predictors were significant (P\ 0.05)

for 33 loci, including all OMI loci and 7 of 11 BayeScan

loci. Percentages of deviance explained by significant

GLMs ranged from 0.20 to 0.52. Summer precipitation

(SP) and winter precipitation (WP) were retained most

frequently in GLMs (15 and 17 models, respectively),

followed by summer maximum temperature (SMT; 13

models) and winter minimum temperature (WMT; 11

models) (Table 2). Slope and thermal inertia were not

retained in GLMs.

Characterizing adaptive variability

across the landscape

Multivariate models of adaptive genetic variability

Mantel correlations for neutral loci were significant

between genetic and geographic distances, but not between

genetic and environmental distances (Table 3). In contrast,

Mantel correlations for potentially adaptive loci were sig-

nificant in all tests (Table 3). In particular, the correlation
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between genetic and environmental distance was signifi-

cant after removing the effect of geographic distance

(r = 0.162, P = 0.015). In Mantel correlograms, poten-

tially adaptive loci showed stronger positive correlations

than neutral loci at shorter distances, along with larger

negative correlations at greater distances (Fig. 2).

GDM explained 28.41 % of the total deviance in

potentially adaptive loci frequencies (P = 0.009), based on

eight predictors (Fig. 3). Summing the I-spline basis

coefficients for each predictor provides a means of com-

paring variable importance corresponding to the total

height of each curve (Fitzpatrick et al. 2013). Based on this

criterion, seasonal thermal range explained the most vari-

ability in adaptive loci frequencies (0.12), followed by

water stress index (0.09) and summer maximum tempera-

ture (0.07). The association between potentially adaptive

Table 2 Potentially adaptive

loci identified through a

landscape genetics approach

(OMI) and outlier locus

detection (BayeScan)

Locus OMI BayeScan GLM model Deviance

B52.5 3 SP 0.20*

B74.2 3 SP ? SMT ? STH 0.43***

B88.6 3 WPSPRT ? STH 0.37***

B98.0 3 WP ? SP ? SMT ? TOPIND 0.48***

B101.3 3 None 0.09

B116.0 3 WP ? SP 0.23**

B122.1 3 SP ? WMT ? STH 0.31***

B129.8 3 WP ? SP ? WMT ? TOPIND 0.37***

B130.5 3 WP ? SP ? SMT ? SWS 0.41***

B146.3 3 SMT ? STH 0.33***

B164.5 3 3 WP ? SP 0.40***

B194.0 3 SP ? SMT 0.28***

G62.6 3 WMT ? TOPIND 0.35***

G67.0 3 SP ? SMT ? WPSPRT ? SWS 0.33***

G83.4 3 WMT ? SMT 0.18**

G111.0 3 3 SP ? SMT ? STH ? TOPIND 0.51***

G139.7 3 WP ? SP ? WPSPRT ? STH 0.34***

G151.2 3 WP ? WMT ? SMT ? STH 0.27**

G157.4 3 WMT ? WPSPRT ? TOPIND 0.25***

G170.0 3 3 WP ? SP ? WMT ? TOPIND 0.52***

G179.9 3 WP ? SMT 0.22***

G231.5 3 None 0.19

R52.0 3 WP ? WMT 0.21*

R85.7 3 WP ? SP ? WMT 0.40***

R87.0 3 SMT ? WPSPRT ? SWS 0.46***

R106.1 3 WMT ? SMT ? WPSPRT ? SWS 0.44***

R118.8 3 STH 0.30***

R138.5 3 WP ? SP ? WPSPRT 0.25**

R141.5 3 WPSPRT ? SWS 0.39***

R157.3 3 3 SP ? STH ? TOPIND 0.44***

R166.0 3 3 WP 0.38***

R184.5 3 WP ? SMT ? WPSPRT ? TOPIND 0.38***

R189.0 3 None 0.11

Y71.4 3 SP ? SWS ? STH 0.49***

Y75.9 3 WP ? TOPIND 0.25***

Y95.4 3 WMT ? WPSPRT 0.30***

Y191.0 3 None 0.08

Terms that best explained allele frequencies at sampling locations in quasi-binomial GLM models are

given, along with model goodness-of-fit measures

* P\ 0.05, ** P\ 0.01, *** P\ 0.001
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loci and seasonal thermal range was predominantly linear,

while associations with summer maximum temperature and

water stress index were nonlinear. Higher temperatures and

lower water stress index values (corresponding to drier

conditions) contributed to greater variation in potentially

adaptive loci.

Spatial interpolations

The interpolation of pointwise genetic dissimilarities

showed that predicted changes in potentially adaptive loci

were variable through space (Fig. 4a). Regions with high

predicted genetic dissimilarities, corresponding to variation

in influential ecological gradients (e.g., thermal range, water

stress index and summer maximum temperature), included

the northeastern Mojave Desert and Baker, CA (Fig. 4a). In

contrast, much of the southwestern Mojave Desert exhibited

low predicted genetic dissimilarities through space. The map

of transformed ecological predictors (Fig. 4b) revealed pat-

terns of local adaptation predicted for S. ambigua based on

GDM splines. Low-lying basins with extreme temperatures

and limited precipitation (e.g., the green-colored Death

Valley trough extending northwesterly from Baker, CA)

were distinguished from higher elevation areas with less

extreme conditions (purple–pink coloration). Spatial boot-

strapping of the GDM model (comparing successive inter-

polations in Procrustes analysis) revealed inconsistencies in

model performance across the interpolated genetic surface

(Fig. 5). Areas with higher Procrustes error were generally

outside of the climate space represented by sampled popu-

lations. In contrast, areas within the sampled climate space

exhibited low Procrustes errors.

Discussion

Using a combination of outlier locus detection, landscape

genetics, and multivariate statistics, we identified correla-

tions between potentially adaptive loci and environmental

gradients in the desert species Sphaeralcea ambigua.

Potentially adaptive loci were best associated with summer

maximum temperature, water stress index, and seasonal

temperature range, exhibiting both linear and nonlinear

patterns of variation along these gradients. Adaptive

divergence in alpine plants (e.g., Poncet et al. 2010; Manel

et al. 2012) and forest trees (e.g., Evans et al. 2014; De

Kort et al. 2014; Steane et al. 2014) has also been related to

temperature and precipitation through genome scans.

However, our study is unique in several ways: (1) we

visualize the scale of adaptive divergence across the

landscape, mapping regions of high genetic dissimilarities

through space (Fig. 4a); (2) we interpolate predicted spatial

patterns of local adaptation with respect to ecological

gradients (Fig. 4b); and (3) we map uncertainty in spatial

interpolations by comparing bootstrapped GDM iterations

through Procrustes analysis (Fig. 5). These novel approa-

ches will inform both ecological restoration and climate

change modelling.

Table 3 Mantel tests

describing the relationship

between genetic, environmental,

and geographic distances

Mantel test Neutral loci Potentially adaptive loci

r P r P

Genetic 9 environment 0.052 0.235 0.422 0.000

Genetic 9 geographic 0.088 0.032 0.571 0.000

Genetic 9 environment – geographic 0.005 0.425 0.162 0.015

Genetic 9 geographic – environment 0.071 0.093 0.449 0.000

Geographic 9 environment 0.543 0.000 0.543 0.000

Partial Mantel tests are indicated by ‘‘–’’, with the partialed-out term to the right of the dash

Fig. 2 Mantel correlograms showing the strength of correlations

between genetic and geographic dissimilarity as a function of

increasing geographic distance for neutral and potentially adaptive

loci. Filled squares indicate significant (P\ 0.05) Mantel

correlations
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Landscape genomics and restoration

Associations between plant genotypes, phenotypes, and

environmental gradients are reported in experiments com-

bining marker-based genome scans with common gardens

(e.g., Herrera and Bazaga 2008; Richardson et al. 2009;

Hancock et al. 2011; De Kort et al. 2014; Steane et al.

2014) or genome-wide association studies (e.g., Fournier-

Level et al. 2011; Evans et al. 2014), providing evidence

that genome scans can distinguish phenotypes. Accord-

ingly, molecular markers are increasingly used to guide

ecological restoration, particularly for pre-treatment deci-

sion-making (e.g. seed sourcing; Mijangos et al. 2015), and

may provide cost or time advantages over common garden

experiments. However, this approach does not directly link

potentially adaptive loci with phenotypic traits important in

restoration, such as germination requirements or drought

tolerance. Additional studies are needed to identify the

Fig. 3 I-splines derived from a generalized dissimilarity model

(GDM) linking variability in potentially adaptive loci with environ-

mental predictors. Curve height indicates the variability explained by

each predictor, while slope indicates the rate of change in loci

frequencies along each predictor’s range. Error bars show

bootstrapped standard deviations, while rug plots show environmental

values at sampled populations. The top left panel shows the

relationship between observed genetic dissimilarity and environmen-

tal dissimilarity
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range of conditions wherein molecular markers accurately

characterize phenotypic differentiation in fitness traits,

resulting in improved restoration outcomes (Bragg et al.

2015; Mijangos et al. 2015). Along these lines, S. ambigua

is currently being evaluated in multiple common gardens

located along a climatic gradient in the Mojave Desert.

Assuming potentially adaptive loci reflect true adaptive

differentiation, our GDM approach is particularly suited to

guide restoration. Risk of low survival in maladapted

plantings has made the scale of local adaptation with

respect to environmental gradients a central question

(Hufford and Mazer 2003; McKay et al. 2005). Our GDM

interpolation of predicted genetic dissimilarities (Fig. 4a)

addresses this directly by contrasting regions where fre-

quencies of potentially adaptive loci vary over short (red

coloration) or wider (blue coloration) spatial gradients. The

different spatial scales over which potentially adaptive loci

diverged in S. ambigua suggest that ecological rather than

Fig. 4 Spatial interpolations of

a generalized dissimilarity

model (GDM) linking

potentially adaptive loci in

Sphaeralcea ambigua with

environmental predictors.

a Interpolation of the predicted

pairwise genetic dissimilarities

(normalized to range between 0

and 1) between points on a

uniform 10 km2 grid.

b Interpolation of the

multidimensional climatic space

derived from a principal

components analysis of GDM-

transformed environmental

predictors
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geographic distance criteria (e.g., ‘‘provenance threshold

distances’’; Stingemore and Krauss 2013) would best guide

restoration. Moreover, ecological gradients driving changes

in potentially adaptive loci—summer maximum tempera-

ture, seasonal thermal range, and water stress index for S.

ambigua (Fig. 3)—could be matched between seed source

and restoration sites.

Seed sourcing poses a considerable challenge for large-

scale restoration. Recently, three approaches have been

contrasted: (1) local provenancing based on seed transfer

zones (distances within which seeds can be transferred

without risk of maladaptation); (2) admixture provenancing

using genetically diverse seed mixes to maximize evolu-

tionary potential; and (3) predictive provenancing, or

choosing seed sources to cope with future climates (Lesica

and Allendorf 1999; Breed et al. 2013; Kettenring et al.

2014). While considerable debate exists surrounding these

approaches (Breed et al. 2013), we propose that GDM-

based spatial interpolations can guide all three. The map of

GDM-transformed predictors (Fig. 4b) represents potential

seed transfer zones, as areas with similar coloration are

predicted to be similarly adapted. Alternatively, this map

could support admixture provenancing if seed sources are

collected from geographically separated but ecologically

related (similar map coloration) areas, potentially increas-

ing genetic diversity while minimizing maladaptation risks.

Finally, comparisons between GDM models for current and

projected future climates could inform predictive prove-

nancing by revealing regions of greatest predicted disrup-

tion to adaptive loci/environment associations (e.g.,

Fitzpatrick and Keller 2015).

Landscape genomics and climate change

Plants in extreme environments may be particularly sus-

ceptible to changing climate because of their narrow dis-

tributions and potential exposure to rapid rates of

environmental change (Walther et al. 2002; Parmesan

2006). Arid regions face warming along with changes in

the frequency and intensity of extreme climatic events over

the next century (Dai 2013; IPCC 2013). Whether desert

plant populations, already adapted to harsh and variable

climates, will remain viable under heightened extremes is

uncertain (Brown et al. 1997; Salguero-Gómez et al. 2012)

and depends on capacities for dispersal, evolution, or

phenotypic plasticity (Reusch and Wood 2007). In the arid

southwestern US, widespread plant population declines

following recent droughts (Breshears et al. 2005; Miriti

et al. 2007), along with long-term vegetation studies sug-

gesting vulnerability to increased aridity (Munson et al.

2012; Munson 2013), cast doubt on phenotypic plasticity as

the sole mechanism for maintaining populations. Adaptive

genetic variability is therefore likely to shape population

responses to future climate.

Desert plants have shown phenotypic divergence with

respect to germination phenology (Meyer and Pendleton

2005) and drought response (Sandquist and Ehleringer

1997) in common gardens, traits likely to influence species’

responses to climate change. Landscape genomics provides

a basis for identifying ecological drivers of adaptive

divergence across a wide number of species and popula-

tions, representing a useful step towards understanding

intraspecific differences in climate change vulnerability.

Fig. 5 Spatial uncertainty in a

GDM model of potentially

adaptive loci for Sphaeralcea

ambigua. Procrustes analysis

was used to compare successive

predictions from bootstrapped

GDM simulations (n = 1000).

Hatching covers areas within

the climate space represented by

sampled populations
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We find evidence for adaptive genetic divergence in S.

ambigua with respect to temperature (both maxima and

annual range) and water stress index. Nonlinearities in

GDM splines suggest that certain populations may expe-

rience greater genotype/environment asynchronies from

changes in summer maximum temperature and water stress

than others (note that slopes of GDM splines correspond to

changes in loci frequencies). In contrast, the strong linear

relationship between potentially adaptive loci and seasonal

thermal range suggests that populations may be similarly

affected by changes in temperature seasonality. These

findings highlight how predictions of increased tempera-

tures and drought may be interpreted in terms of popula-

tion-level intraspecific variability. However, our GDM

model points to potential adaptive divergence without

identifying the quantitative traits or ecological mechanisms

involved, for which common gardens (e.g., De Kort et al.

2014) or genome-wide association studies (e.g., Evans

et al. 2014) are necessary.

Statistical considerations in the identification

of potentially adaptive loci

Numerous processes may confound identification of

adaptive loci and lead to false positives, including: historic

population expansions, bottlenecks, or periods of sec-

ondary contact (gene flow) between previously isolated

populations; hierarchical spatial genetic structure or isola-

tion by distance (IBD); and divergence hitchhiking, where

neutral alleles linked to adaptive loci show increased

divergence (Excoffier et al. 2009; Feder and Nosil 2010;

Holderegger et al. 2010; Manel et al. 2012; Schoville et al.

2012; Strasburg et al. 2012; Bragg et al. 2015). These

processes may produce geographic clines in neutral allele

frequencies resembling those expected under selection.

Although outlier locus detection methods account for

spatial genetic structure (Foll and Gaggiotti 2008; Excof-

fier et al. 2009), they assume that adaptive loci exhibit

clines in allele frequency different from neutral loci, and

may produce false positives when this condition is violated

(De Mita et al. 2013; De Villemereuil et al. 2014). How-

ever, simulations incorporating complex spatial genetic

structures have found BayeScan comparatively robust to

Type I error (Pérez-Figueroa et al. 2010; Narum and Hess

2011; Vilas et al. 2012). In our analysis, BayeScan iden-

tified 11 of 153 AFLP loci (7.2 %) as under divergent

selection, below the average of 8.9 % reported in Strasburg

et al. (2012) from a review of genome scans in plants.

Seven of these loci were also significantly correlated with

environmental gradients in GLM models (Table 2), and

five were identified by OMI, providing further evidence for

selection. The four loci that did not correlate with envi-

ronmental gradients may correspond to selective factors

not accounted for in our study, such as fine-scale (\1 km2)

topographic variation, or are potential false positives.

Relative to outlier locus detection, landscape genetic

methods correlating allele frequencies with environmental

gradients have increased power to identify loci under

selection, but also higher Type 1 error when correlations

with environmental gradients arise from processes other

than selection (De Mita et al. 2013; De Villemereuil et al.

2014). OMI identified 31 loci as potentially adaptive fol-

lowing p-value correction. GLMs confirmed the significant

relationships between these loci and environmental gradi-

ents (Table 2). Although the proportion of potentially

adaptive loci identified by OMI (20.3 %) is within the

range (0.4–35.5 %) reported in Strasburg et al. (2012), it is

well above average. Not accounting for spatial genetic

structure may make OMI susceptible to higher rates of

Type I error than BayeScan, as are landscape genetic

methods involving linear or logistic regression (e.g., Joost

et al. 2007; Manel et al. 2012). However, our interpretation

of loci identified by OMI as potentially adaptive is sup-

ported by Mantel analyses showing: (1) different patterns

of spatial autocorrelation for potentially adaptive versus

neutral loci, including greater dissimilarities at larger dis-

tance classes, pointing to selective factors that do not have

a genome-wide effect; and (2) a significant correlation

between potentially adaptive loci and environmental vari-

ables after removing the effect of geographic distance

between populations (Table 3), which generally corre-

sponds with neutral genetic structure (e.g., IBD; Manel

et al. 2010). Furthermore, relationships between potentially

adaptive loci and environmental gradients in GDM were

robust to simulations leaving out 10 % of populations

(Fig. 3), suggesting that observed patterns were general

rather than artefacts of sampling design or few isolated

populations.

Both outlier locus and landscape genetic methods are

single-marker analyses that do not account for multivariate

relationships in adaptive portions of the genome. However,

there are several scenarios where single marker analyses

may fail to identify genomic signals of selection. First,

quantitative traits directing plant responses to environ-

mental cues are often polygenic, involving numerous

small-effect loci spread throughout the genome (Le Corre

and Kremer 2012; De Villemereuil et al. 2014). Second,

soft sweeps (adaptation from standing genetic variation)

are more likely to involve polygenic traits that are not

distinguishable from background genomic variation (Bar-

rett and Schluter 2008; Schoville et al. 2012). Third,

selectively neutral loci may develop associations with

environmental gradients due to isolation-by-environment

(IBE), wherein propagule establishment is limited by

environmental suitability (Orsini et al. 2013; Sexton et al.

2014); background genomic variation may then predict
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establishment success (Schoville et al. 2012; Bragg et al.

2015). By incorporating complex inter-correlation patterns,

multivariate models such as GDM may better account for

genomic architectures of selection than single-marker

analyses (Sork et al. 2013). Moreover, in cases of IBE or

complex polygenic traits, multivariate models including

both adaptive and neutral loci with environmental associ-

ations may still guide ecological restoration or climate

change modelling (Bragg et al. 2015). In this respect, dif-

ferent methodologies may be appropriate in a restoration

context than when characterizing the molecular architec-

ture of adaptation (e.g., identifying quantitative trait loci).

Another important consideration in developing spatial

models of adaptive genetic variability is the uncertainty in

mapped interpolations with respect to sample size, geo-

graphic distribution of sample populations, and error in

model parameters (Thomassen et al. 2010). Using a novel

spatial bootstrapping approach that overlaid areas of high

interpolation uncertainty with the climate space repre-

sented by sample populations, we found that GDM was

robust within the climate space represented by S. ambigua

populations, but less consistent between bootstrap itera-

tions outside of this climate space (Fig. 5). Hence, caution

is warranted when applying genetic or common garden

data to applications such as the delineation of seed transfer

zones, where it may be desirable to extend mapping

regions beyond the environmental limits spanned by sam-

ple populations (e.g., St. Clair et al. 2013). Mapping of

model uncertainty within sampled climates may also help

to identify patterns of spatial autocorrelation in residuals

that may reveal important artefacts of sampling design or

spatial genetic structure.
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