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Abstract Mercury (Hg) biomonitoring of pinnipeds

increasingly utilizes nonlethally collected tissues such as

hair and blood. The relationship between total Hg con-

centrations ([THg]) in these tissues is not well understood

for marine mammals, but it can be important for inter-

pretation of tissue concentrations with respect to ecotox-

icology and biomonitoring. We examined [THg] in blood

and hair in multiple age classes of four pinniped species.

For each species, we used paired blood and hair samples

to quantify the ability of [THg] in hair to predict [THg] in

blood at the time of sampling and examined the influence

of varying ontogenetic phases and life history of the

sampled animals. Overall, we found that the relationship

between [THg] in hair and blood was affected by factors

including age class, weaning status, growth, and the time

difference between hair growth and sample collection.

Hair [THg] was moderately to strongly predictive of

current blood [THg] for adult female Steller sea lions

(Eumetopias jubatus), adult female California sea lions

(Zalophus californianus), and adult harbor seals (Phoca

vitulina), whereas hair [THg] was poorly predictive or not

predictive (different times of year) of blood [THg] for

adult northern elephant seals (Mirounga angustirostris).

Within species, except for very young pups, hair [THg]

was a weaker predictor of blood [THg] for prereproduc-

tive animals than for adults likely due to growth, vari-

ability in foraging behavior, and transitions between

ontogenetic phases. Our results indicate that the rela-

tionship between hair [THg] and blood [THg] in pin-

nipeds is variable and that ontogenetic phase and life

history should be considered when interpreting [THg] in

these tissues.

Mercury (Hg) concentrations in many marine ecosystems

are increasing and have led to concern about the potential

impacts of bioaccumulation in some top predators (Mon-

teiro and Furness 1997; Sunderland and Mason 2007; Dietz

et al. 2011; Mason et al. 2012). There has been an increase

in ecotoxicology research and biomonitoring of Hg due to

the potential negative effects of methylmercury (MeHg) on

marine predators (including humans) over a wide range of

Hg concentrations and periods of exposure (Ronald et al.

1984; Das et al. 2003; Finkelstein et al. 2007; Basu et al.

2009). Internal organs, such as liver and kidney, are valu-

able target tissues for biomonitoring because they represent

Hg uptake, modified by biotransformation and sequestra-

tion processes, over the lifetime of the individual, although

they typically require lethal sampling (e.g., necropsy or

biosampling of animals harvested for food). As a result,

there have been an increasing number of studies quanti-

fying Hg concentrations in tissues that can be collected

nonlethally.
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Nonlethally collected keratinized tissues and blood

provide evidence of relatively recent exposure of animals

to Hg, compared with Hg in liver and kidney, and can

facilitate the direct linkage of Hg concentrations with

more recent foraging behavior and current toxicological

risk (Day et al. 2007; Eagles-Smith et al. 2008). In

addition, total mercury (THg) in keratinized tissues and

blood is almost entirely MeHg compared with liver and

kidney (van de Ven et al. 1979; Soria et al. 1992;

Woshner et al. 2008; Bond and Diamond 2009; Eagles-

Smith et al. 2009; Dietz et al. 2011). MeHg in circulating

whole blood is bioavailable, can cross the blood-brain

barrier (Aschner and Aschner 1990), or be incorporated

into other tissues, and it has the potential for a range of

toxicological effects (Freeman and Sangalang 1977;

Ronald et al. 1977; Basu et al. 2009; Dietz et al. 2013). In

sled dogs, Hg in whole blood is transient on a relatively

short timescale with a half-life of approximately

40–60 days (Lieske et al. 2011); thus, Hg in whole blood

reflects absorption from recent meals, transfer to and

between other tissues, and transformation processes

within the animal. In contrast, Hg binds to proteins in

feathers and hair during periods of growth and is not

bioavailable to the host once the keratinized tissue is

grown (Wang et al. 2014). At the time of growth, kera-

tinized tissues can reflect circulating (e.g., blood) Hg

concentrations as shown in birds and mink (Furness et al.

1986; Lewis and Furness 1991; Wang et al. 2014),

although it is not clear if the strength of this relationship

persists throughout the year. It can be important to

understand the relationship between Hg in keratinized

tissues and blood to maximize the utility of samples and

guide interpretation of tissue concentrations in the context

of current toxicological risk.

Keratinized tissues, such as hair and feathers, are often

used for Hg research in wildlife due to the ease of col-

lection and sample storage, limited impact of sampling to

the animal, discrete growth period of these tissues in many

species, and the high binding affinity of MeHg for protein-

rich tissues (Harris et al. 2003; Clarkson and Magos 2006).

Keratinized tissues are often used to represent Hg exposure

in animals with the underlying assumption that hair or

feather Hg concentrations are strongly correlated with

internal tissue concentrations that directly influence current

toxicological risk (Hartman et al. 2013). However, these

assumptions may be contradicted when foraging behavior

(e.g., location, diet), body condition (i.e., related to periods

of growth or fasting), or Hg exposure changes between the

time of keratinized tissue growth and the time of sampling,

as shown in birds when comparing the relationship of Hg in

feathers with Hg in blood (Ackerman et al. 2008, 2011;

Eagles-Smith et al. 2008; Hartman et al. 2013; Lavoie et al.

2014). If the relationship between Hg in keratinized tissues

and blood is decoupled due to physiological or ecological

factors, then keratinized tissues and blood may provide

insight into different intra-annual time periods for an

individual and broaden the scope of a given study. In

addition, understanding the temporal dynamics of these

tissues can facilitate studies where it becomes important to

make sure that individuals are directly comparable. For

example, longitudinal studies of Hg in keratinized tissues

have been employed in mammals and birds to show

changes in Hg exposure over many years because these

tissues were annually grown at the same time each year

(Monteiro and Furness 1997; Dietz et al. 2006). For studies

that attempt to link Hg in blood with recent foraging

behavior and Hg exposure, it may be important to know if

individuals sampled at different times of year can be

directly compared or if there are any predictable ways to

account for variability in sampling time period.

Pinnipeds, a group of marine mammals that includes

seals, sea lions, fur seals, and walrus, show markedly

different reproductive and molting strategies (Costa

1991), which may influence how well Hg concentrations

in hair and blood represent each other. In general, pin-

nipeds are classified broadly into two overarching life-

history strategies: income breeders and capital breeders.

Income breeders forage continuously during lactation,

with females alternating between periods of onshore

nursing and at-sea foraging (Boness et al. 1994; Melin

et al. 2000). Capital-breeding species fast during lactation,

and there is often substantial geographic separation of

breeding and foraging locations (Robinson et al. 2012).

The duration of lactation can vary substantially within

both income- and capital-breeding species, ranging from a

minimum of several days to a maximum of 3 years (Costa

1991; Champagne et al. 2012). Molting strategies vary

among species both in the type of molt that occurs and in

the extent of fasting during the molt (Fay 1982; Ashwell-

Erickson et al. 1986; Daniel 2003; Ling 2012). In contrast

to species that forage while molting, some species, such

as the northern elephant seal (Mirounga angustirostris),

fast while they undergo what is referred to as a ‘‘catas-

trophic molt,’’ during which the epidermis is sloughed off

with the old hair as new hair grows in over a much

shorter duration than most pinnipeds (Worthy et al. 1992;

Ling 2012).

Despite the increasing use of hair and blood for eco-

toxicological studies and biomonitoring of Hg in pinnipeds,

there have been no comprehensive studies investigating the

relationship between Hg concentrations in these tissues and

the factors that influence this relationship. We measured

Hg in hair and blood of individuals from four eastern North

Pacific pinnipeds that spanned a spectrum of ontogenetic
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phases and included both capital- and income-breeding

species (Table 1). We quantified Hg in hair and blood of

Steller sea lions (Eumetopias jubatus), California sea lions

(Zalophus californianus), harbor seals (Phoca vitulina),

and northern elephant seals to (1) determine whether hair

Hg concentrations predict blood Hg concentrations at the

time of sampling; (2) evaluate the influence of varying

factors, including ontogenetic phase, on the relationship

between Hg concentrations in hair and blood; and (3)

assess Hg concentrations in blood and hair by species and

age class.

Methods

Animal Handling and Sampling

Animals were captured, restrained, and sampled using

standard techniques (Jeffries et al. 1993; Le Boeuf et al.

2000; Castellini et al. 2012; McDonald and Ponganis 2013;

Rea et al. 2013; McHuron et al. 2014). Sampling efforts

were determined by concurrent research that restricted

handling of animals to specific periods (Tables 1, 2), and

some data from this article, as cited later in the text, are

Table 1 Life history characteristics of age classes from four species of North Pacific pinnipeds: Steller sea lion (E. jubatus), California sea lion

(Z. californianus), harbor seal (P. vitulina), and northern elephant seal (M. angustirostris)

Species Age class Sex Breeding

strategyb
Extensive

fasting

Molt typed Lactation

duratione
Hair Hg source Blood Hg source

Steller sea lion Adult F Income No Gradual Approximately 1 year Prey Prey

Steller sea lion Juvenile F/M – No Gradual – Milk Prey and milk

Steller sea lion Old pup F/M – No Gradual – Gestation or milk Milk

Steller sea lion Young

pup

F/M – No Gradual – Gestation Gestation and

milk

California sea

lion

Adult F Income No Gradual Approximately 1 year Prey Prey

California sea

lion

Juvenile F/M – No Gradual – Prey or milk Prey

Harbor seal Adult F Income No Gradual 3–6 weeks Prey Prey

Harbor seal Adult M – No Gradual – Prey Prey

Harbor seal Juvenile F/M – No Gradual – Prey Prey

Elephant seal Adult F Capital Yesc Catastrophic Approximately 26

days

Prey and body

storesc
Prey or body

storesc

Elephant seal Adult M – Yesc Catastrophic – Prey and body

storesc
Prey or body

storesc

Elephant seal Old pupa F/M – No – – Gestation Gestation and

milk

Elephant seal Young

pupa
F/M – No – – Gestation Gestation and

milk

Molt type indicates the time period over which hair is grown: Gradual molt happens during a period of 1 to several months, whereas a

catastrophic molt happens over a much shorter time period of several weeks when the hair and epidermis is sloughed off together while new hair

grows in underneath

Adults were reproductive-aged animals, and juveniles were prereproductive animals[1 year old that may or may not have been independently

foraging at the time of sampling, based on the species. Old pups were 2–3 months old for Steller sea lions (in the process of molting their lanugo)

and 23 days for elephant seals (still had lanugo). Young pups were dependent young with lanugo and were 0.5 months old for Steller sea lions

and 5 days old for elephant seals

References for life-history characteristics: Pitcher and Calkins 1981; Worthy et al. 1992; Boness et al. 1994; Le Boeuf et al. 2000; Melin et al.

2000
a Elephant seal pups were sampled at day 5 (young pups) and day 23 (old pups) during the approximately 26-day lactation period. They grow

rapidly and do not molt their lanugo until after weaning
b Pinnipeds generally fall into two reproductive strategies: income breeding (foraging while lactating) and capital breeding (fasting while

lactating) (Costa 1991). See the previous references for general life-history characteristics of the four study species
c Elephant seals have two extensive annual fasting periods, one during breeding (approximately 5–6 weeks for females and approximately

2–3 months for males) and one during molting (approximately 6 weeks)
d Molting in pinnipeds typically happens gradually during several months (Daniel 2003), although some species, such as the northern elephant

seal, undergo a catastrophic molt that happens over a much shorter time period while the animal is fasting (Ling 2012)
e Lactation duration refers to the approximate length of time the adult female is lactating, although the duration is variable within each species
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presented in other publications. Steller sea lions were

sampled throughout the Aleutian Islands, Gulf of Alaska,

and southeast Alaska between 2000 and 2013 (Fig. 1;

Castellini et al. 2012; Rea et al. 2013). California sea lions

were sampled at San Nicolas, San Miguel, and Año Nuevo

Islands in California between May and October 2013

(Fig. 1). Harbor seal adults and juveniles were sampled in

San Francisco Bay and Elkhorn Slough in California

between 2009 and 2011 (Fig. 1; McHuron et al. 2014).

Northern elephant seals were sampled at Año Nuevo State

Reserve, California, between 2011 and 2013 (Fig. 1) at the

extremes of body condition associated with the start and

end of both the breeding and molting fasts, and some

individuals were sampled during multiple periods

(Tables 1, 2). Paired hair and whole blood samples were

collected from each animal. We determined the approxi-

mate number of months since molt for each harbor seal

because they were sampled throughout the year. For Steller

sea lions and northern elephant seals, we collected lanugo

(natal hair) from young nursing pups. Lanugo is grown in

utero and is representative of Hg concentrations to which

the pup was exposed during gestation, which is thought to

be the major period when female pinnipeds transfer Hg to

their pups (Wagemann et al. 1988; Habran et al. 2011).

Standard length was recorded for some species and age

classes as a proxy for age and development (McLaren

1993). Age class definitions are listed in Table 1. Within

some species, different animals were sampled at varying

times throughout the year and at multiple locations.

Species-Specific Sampling

Steller Sea Lions

We sampled animals at approximately 0.5 months (young

pups), 2–3 months (old pups), 14–16 months (referred to

as ‘‘juveniles’’), and as adult females (Table 1). Young

pups were sampled before molting their lanugo coat, which

happens at approximately 2 months of age (Daniel 2003),

whereas old pups were sampled before and after the lanugo

molt. Juveniles were sampled August to September late in

a molting phase (Daniel 2003). Samples from adult females

were collected late October to early November, after the

annual molt.

California Sea Lions

Juvenile sea lions were sampled at San Nicolas, San

Miguel, and Año Nuevo Islands in September and October

of 2013, whereas adult females were sampled at San

Nicolas and San Miguel Islands in May and August 2013

(Table 1). Juvenile sea lions were sampled at varying

points during the annual molt; therefore, hair was recorded

as either unmolted since the previous year (old), recently

molted (new), or a mix of old and new hair (mixed).

Harbor Seals

Age class was determined based on length, mass, and

capture date (Bigg 1969; Table 1). All prereproductive

animals included in our analysis were assumed to be large

enough to be independently foraging with hair that was

grown while independently foraging. The majority of

molting within the study region occurs in July (Harvey and

Goley 2011); therefore, animals that were fully molted and

captured in August were assigned a value of 1, and animals

captured in June were assigned a value of 11 (with monthly

increments in between), although we realize there is indi-

vidual and age-class variability in the timing of molt.

Northern Elephant Seals

Adult female and male elephant seals were sampled at the

two extremes of body condition, at the start and end of both

the breeding (hereafter ‘‘early breeding’’ and ‘‘late breed-

ing’’) and molting (hereafter ‘‘early molting’’ and ‘‘late

molting’’) fasting periods when animals use haul-outs on

land (Peterson et al. 2014; Fig. 1). Hair is entirely grown

while seals are on land during the annual molt; therefore,

elephant seal hair was newly grown when sampled late in

the molting fast. Pups were sampled early in lactation

(early breeding) at 5 to 6 days after parturition (young

pups), and some of the same pups were resampled late in

lactation (late breeding) at 23 days after parturition (old

pups) (Table 1). Lanugo was only collected from pups

early in lactation and assumed not to change during the

course of the lactation period because it was grown in

utero, whereas blood was sampled at early and late

lactation.

Hg Analysis

We followed standard protocols for preparation of samples

and quantification of total mercury concentrations ([THg])

in hair and blood (Ackerman et al. 2008; Castellini et al.

2012; Rea et al. 2013; McHuron et al. 2014). All samples

were analyzed for THg using a Milestone DMA-80 direct

mercury analyzer (Milestone, Monroe, Connecticut, USA)

at either the United States Geological Survey Field Station

Mercury Laboratory in Dixon, California, USA (California

sea lions and elephant seals) or the Wildlife Toxicology

Laboratory at the University of Alaska Fairbanks in Fair-

banks, Alaska, USA (Steller sea lions and harbor seals).

Quality-assurance measures during each run included cer-

tified reference materials, continuing calibration verifica-

tions, system and method blanks, and duplicate samples.
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Recoveries of standard and reference material were previ-

ously reported for harbor seals (McHuron et al. 2014) and

for Steller sea lion samples collected between 2000 and

2011 (Castellini et al. 2012; Rea et al. 2013). For analysis

of elephant seal and California sea lion samples, recoveries

(mean ± SE) for certified reference materials from the

National Research Council of Canada, Ottawa, Canada

(DORM-3, DOLT-3, DOLT-4, or TORT-3) were

101.3 ± 0.5 % (N = 75) and for calibration verifications

were 102.0 ± 0.8 % (N = 96). Absolute relative percent

difference for sample duplicates averaged 4.3 ± 0.5 %

(N = 88). Mercury concentrations (lg g-1) are reported as

[THg]blood wet weight (ww) for whole blood samples and

[THg]hair dry weight (dw) for hair samples.

Overall Statistical Analysis

We performed statistical analyses using general linear

models in the statistical program R version 3.1.0 (MuMIn

package; R Development Core Team, Vienna, Austria) to

examine how well variability in [THg]hair explained the

variability in [THg]blood for the different pinniped species

across a range of age classes (Table 3). We natural-log-

transformed [THg]hair and [THg]blood before commencing

statistical analysis to meet the assumptions of normality

and homogeneity of variance. The interaction between

[THg]hair and age class was significant for all species;

therefore, we ran subsequent, more extensive analyses on

all age classes separately. Age-specific models varied by

species and age class based on the representation of sex,

time of year, standard length, and ontogenetic phases

within an age class (e.g., weaning status) in the datasets for

the four different species (Table 3). Full and reduced

models were compared using Akaike Information Crite-

rion adjusted for small sample sizes (AICc), and models

within a DAICc value of 2 were further examined to select

the most parsimonious model (Burnham et al. 2011). If the

best model contained variables other than [THg]hair to

explain the variability in [THg]blood, we calculated evi-

dence ratios between the best model and the model without

the additional variable. We used the adjusted r2 value from

the best model to characterize the predictive ability:

r2 B 0.35 had little predictive ability; 0.36\ r2\ 0.55

was weakly predictive; 0.56\ r2\ 0.75 was moderately

predictive; and r2[ 0.75 was strongly predictive (O’Hara

et al. 2008). Regression equations for the best models with

adjusted r2 C 0.35 are listed in Table 4.

Species-Specific Statistical Analyses

Steller Sea Lions

We ran a full model with all prereproductive age classes

together to examine if there was an interaction between

prereproductive age class and [THg]hair. The interaction

was significant, which further justified separate analysis for

each prereproductive age class. The full model for young

pups included [THg]hair, sex, standard length, and an

interaction between [THg]hair and sex. The full model for

old pups was the same as for young pups with the addition

of molt status and an interaction between [THg]hair and

molt status. The full model for juveniles was the same as

Fig. 1 Map of sampling locations of the four eastern North Pacific

pinniped species sampled at terrestrial haulouts for THg in whole

blood and hair: Steller sea lions (E. jubatus), California sea lions [Z.

californianus (Z. c.)], harbor seals [P. vitulina (P. v.)], and northern

elephant seals [M. angustirostris (M. a.)]. Steller sea lions were

sampled throughout southeast Alaska and the Aleutian islands (shown

in the large inset box within the left panel). California sea lions,

harbor seals, and northern elephant seals were sampled within

California, and arrows indicate sampling locations. Harbor seals were

sampled from multiple locations in San Francisco Bay
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for young pups with the addition of weaning status (de-

termined by whisker isotope analysis Rea et al. 2015) and

an interaction between [THg]hair and weaning status. For

adult females, the only variables in the full model were

[THg]hair and standard length.

California Sea Lions

For prereproductive animals, we included [THg]hair, sex,

molt status (old, new, or mixed hair), and an interaction

between [THg]hair and molt status as possible explanatory

variables. We added standard length to the separate anal-

ysis for adult females. It should be noted that samples from

adult females did not represent multiple molt phases, and

thus this variable was not examined for adult females.

Harbor Seals

Factors included in the full models for adults and juveniles

included [THg]hair, sex, the number of months since molt,

and an interaction between [THg]hair and sex. Harbor seals

were the only nonfasting species in our study with animals

sampled throughout the year, which allowed us to examine

the potential influence of the time since the growth of new

hair on the relationship between [THg]blood and [THg]hair.

Northern Elephant Seals

We examined the four distinct times of year separately

because of the extreme differences in physiology between

the time periods due to fasting on land in addition to having

some individuals that were sampled at multiple time peri-

ods. Factors included in the full model for adult seals were

[THg]hair, sex, and an interaction between [THg]hair and

sex. For elephant seal pups, we separately analyzed sam-

ples from early and late breeding.

Results

Overview of Tissue [THg]

Hair and blood [THg] in the four species spanned a wide

range of values from 0.74 to 144.31 lg g-1 dw in hair and

\0.01 to 1.19 lg g-1 ww in blood (Table 2). Overall,

adult northern elephant seals had the greatest median hair

and blood [THg], although the greatest absolute concen-

trations in both tissues were from a harbor seal (Table 2).

Although samples in our study were collected from adult

females of all four species at varying times within a year,

making it complicated to compare them directly, median

[THg]blood was C0.34 lg g-1 ww for northern elephant

seals (for all four different time periods within a year whenT
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we sampled), 0.17 lg g-1 ww for harbor seals,

0.17 lg g-1 ww for California sea lions, and 0.11 lg g-1

ww for Steller sea lions (Table 2). Median [THg]hair was

similar for adult females of all four species: northern ele-

phant seals had C12.87 lg g-1 dw (at the four different

time periods); harbor seals had 11.76 lg g-1 dw; Califor-

nia sea lions had 9.99 lg g-1 dw;, and Steller sea lions had

10.63 lg g-1 dw (Table 2). In contrast, median [THg]hair
was C9.77 lg g-1 for adult male northern elephant seals

(for all four different time periods within a year when we

sampled) and 26.79 lg g-1 for adult male harbor seals

(Table 2). Except for harbor seals, adults generally had

greater ranges and greater median concentrations of THg

than juveniles and old pups within each species, although

young Steller sea lion and northern elephant seal pups had

[THg] in hair and blood that substantially overlapped with

[THg] observed in adult female tissues (Table 2).

Relationship Between Hair and Blood [THg]

In general, [THg]blood in all four species increased with

[THg]hair, but the explanatory power of [THg]hair for

predicting [THg]blood varied substantially among species

and was influenced by factors including ontogenetic

phase and the timing of sampling (Table 3). Hair [THg]

was moderately to strongly predictive of [THg]blood for

adult Steller sea lions, California sea lions, and harbor

seals (adj r2[ 0.60), whereas [THg]hair was poorly pre-

dictive or had no predictive value for [THg]blood in

northern elephant seals (adj r2 B 0.41) (Fig. 2a–d).

Within a species, the predictive power of the best model

was generally higher in adult compared with prerepro-

ductive age classes, with the exception of northern ele-

phant seals, where the predictive power in adults was

particularly low.

The best model for predicting [THg] in blood of adult

female Steller sea lions included only [THg]hair and was

strongly predictive (adj r2[ 0.95), whereas the best mod-

els for all prereproductive age classes of Steller sea lions

each had one additional variable in the best model and

were moderately to strongly predictive (Table 3). The best

model for juveniles included weaning status (evidence

ratio = 1589), whereas the best model for old pups inclu-

ded molt status (evidence ratio = 2484), and the best

model for young pups included standard length (evidence

ratio = 1219) (Table 3). Based on the equation for the best

model, for animals with the same [THg]hair, weaned juve-

niles had approximately 50 % higher [THg]blood than ani-

mals that were still nursing (Fig 3a; Tables 2, 3). Old pups

that had molted their lanugo had approximately 57 % lower

[THg]blood than unmolted animals with the same [THg]hair.

Young pup [THg]blood decreased approximately 15 % for

each 10 cm increase in standard length for animals with the

same [THg]hair (Tables 2, 3). The model with only

[THg]hair was strongly predictive for young pups (adj

r2 = 0.76) but was only weakly predictive of [THg]blood
for old pups and older juveniles (adj r2 = 0.54 and 0.51,

respectively; Table 3). Sex and interactions between

[THg]hair and sex, weaning status, or molting status were

uninformative variables for all of the prereproductive age

classes (Table 3). The DAICc between the best models and

the null model was[19.8.

Table 4 Model equations for the best model to predict [THg]blood from [THg]hair with additional variables for four species of pinnipeds: Steller

sea lion (E. jubatus), California sea lion (Z. californianus), harbor seal (P. vitulina), and northern elephant seal (M. angustirostris)

Species Age class Model equation

Steller sea lion Adult ln[THg]blood = -3.9355 ? (ln[THg]hair) 9 0.7670

Juvenile (nursing) ln[THg]blood = -4.8317 ? (ln[THg]hair) 9 0.8012

Juvenile (weaned) ln[THg]blood = -4.8317 ? (ln[THg]hair) 9 0.8012 ? 0.9139

Old pup (unmolted) ln[THg]blood = -4.6439 ? (ln[THg]hair) 9 0.4875

Old pup (molted) ln[THg]blood = -4.6439 ? (ln[THg]hair) 9 0.4875 - 0.8424

Young pup ln[THg]blood = -3.3238 ? (ln[THg]hair) 9 0.9367 - 0.0157 9 length

California sea lion Adult ln[THg]blood = -4.3057 ? (ln[THg]hair) 9 1.0485

Harbor seal Adult ln[THg]blood = -4.9159 ? (ln[THg]hair) 9 1.0598 ? 0.1008 9 month

Juvenile ln[THg]blood = -3.9481 ? (ln[THg]hair) 9 0.6488 ? 0.1408 9 month

Elephant seal Young pup ln[THg]blood = -3.9769 ? (ln[THg]hair) 9 0.7441

Equations are only shown for the models with adjusted r2 C 0.35

Separate equations are shown for categorical variables (e.g., nursing vs. weaned juvenile Steller sea lions). Continuous variables are length (cm)

and months (integer months since molting, starting with August as month 1 and June as month 11)

Adults were reproductive-aged animals, and juveniles were prereproductive animals[1-year-old. Juvenile Steller sea lions were in the process of

transitioning to independent foraging (nursing vs. weaned). All pups were nursing at the time of tissue sampling. Old pups were 2–3 months old

for Steller sea lions [in the process of molting their lanugo (unmolted vs. molted)] and 23 days old for elephant seals (still had lanugo). Young

pups all had lanugo and were 0.5 months old for Steller sea lions and 5 days old for elephant seals
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The best model to explain [THg]blood in adult female

California sea lions included only [THg]hair and was

moderately predictive (adj r2 = 0.61). The best model for

juveniles included [THg]hair, molt status (newly grown,

mixed new and old, or old hair), and an interaction between

[THg]hair and molt status, and had no predictive value (adj

r2 = 0.24; Table 3). Evidence ratios indicated that the best

model for juveniles was only three times more likely than

the model without the [THg]blood 9 molt status interaction

and only twice as likely as a model without molt status.

The DAICc between the best model for both age groups and

the null model was[8.

The best models for adult and juvenile harbor seals both

included [THg]hair and the time since molt (in months)

(Tables 2, 3; Fig 4). The combination of [THg]hair and the

time since molt was strongly predictive of [THg]blood for

adults (adj r2 = 0.90), whereas those same variables were

moderately predictive of [THg]blood for juveniles (adj

Fig. 2 The ability of [THg]hair to predict current circulating

[THg]blood varied among adults from four species of pinnipeds:

Steller sea lions (E. jubatus), California sea lions (Z. californianus),

harbor seals (P. vitulina), and northern elephant seals (M. angu-

stirostris). Female and male harbor seals and elephant seals are

represented using black (females) and gray (males). Untransformed

data are presented using log10-scaled axes that vary among the panels.

a [THg]hair was strongly predictive of [THg]blood in adult female

Steller sea lions (adj r2 = 0.95). b [THg]hair was moderately

predictive of [THg]blood in adult female California sea lions (adj

r2 = 0.61). c [THg]hair and the number of months since molt was

strongly predictive of [THg]blood in harbor seals (adj r2 = 0.90).

d [THg]hair was poorly predictive of [THg]blood in adult northern

elephant seals when the hair was brand new (late molting fast; adj

r2 = 0.41) but was not predictive at all other times of the year
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r2 = 0.62). Based on calculated evidence ratios, the best

models were approximately 4.4 9 104 and 1.1 9 104 times

more likely than the models without time since molt for

adults and juveniles, respectively. Hair [THg] alone was

strongly predictive of [THg]blood in adults (adj r2 = 0.81)

but was not predictive for juveniles (adj r2 = 0.30;

Table 3; Fig 2b). Sex, standard length, and the

[THg]hair 9 sex interaction were all uninformative

parameters (Table 3). The DAICc between the best model

and the null model for both age classes was[28.

With the exception of young pups, none of the best

models for northern elephant seals were more than weakly

predictive of [THg]blood. When the hair was newly grown

(at the end of the annual molt), [THg]hair was weakly

predictive of [THg]blood (adj r2 = 0.41); however,

[THg]hair had no predictive value at all other times of year

(adjusted r2 B 0.31; Table 3). At all time periods, except

for when the hair was newly formed, the best model for

adult elephant seals included [THg]hair and sex, indicating

that male elephant seals had higher [THg]blood than female

Fig. 3 The influence of different ontogenetic phases on the relation-

ship between [THg]hair and [THg]blood. Untransformed data are

presented using log10-scaled axes that vary among the panels. a The

best model for juvenile (prereproductive animals[1 year old) Steller

sea lions (E. jubatus) included [THg]hair and weaning status (i.e.,

transitioning from nursing to independent foraging) and was moder-

ately predictive of [THg]blood (adj r2 = 0.71). b The best model for

juvenile California sea lions (Z. californianus) included [THg]hair and

molt status (old hair from the previous molt, mixed new and old hair,

and new hair from a recent molt), but it had no predictive value (adj

r2 = 0.24) for [THg]blood. c The best model for northern elephant seal

(M. angustirostris) pups early in lactation included only [THg]hair and

moderately predicted [THg]blood (adj r2 = 0.69), but it had no

predictive value (adj r2 = 0.32) late in lactation (when pups were

near weaning)

Fig. 4 The temporal increase in [THg]blood, relative to [THg]hair with

time since molt, shown here as the [THg]blood-to-[THg]hair ratio, for

adult and juvenile (weaned prereproductive animals [1 year old)

harbor seals (P. vitulina). One seal was omitted from representation

here due to a large ratio but was included in the statistical analysis
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seals for the equivalent [THg]hair (Table 3). Based on

calculated evidence ratios, the best model at early breeding,

late breeding, and early molting was 99, 89, and 5 times

more likely, respectively, than the model with only

[THg]hair (Table 3). The [THg]hair 9 sex interaction

improved the model during early breeding, indicating that

the slope of the [THg]hair and [THg]blood relationship varied

by sex and was slightly steeper for males, but this inter-

action was considered an uninformative variable at other

time periods. The null models for all sampling periods had

a DAIC from the best model between 5.8 and 31.2.

The relationship between [THg]hair and [THg]blood in

northern elephant seal pups substantially changed between

the start (5 days after parturition) and end (23 days after

parturition) of the approximately 26-day lactation period.

Early in lactation, [THg]hair was moderately predictive of

[THg]blood (adj r
2 = 0.69), but [THg]hair had no predictive

value (adj r2 = 0.32) late in lactation (Tables 2, 3;

Fig. 2c). The DAIC between the best model and the null

model was 18.0 early in lactation but decreased to 0.8 late

in lactation.

Discussion

The four North Pacific pinniped species we examined had

[THg]hair and [THg]blood spanning the typical range of

tissue concentrations (hair = 0.74–144.31 lg g-1 dw;

blood =\0.01–1.19 lg g-1 ww) in other pinniped species

including Baikal seals (Pusa sibirica), Caspian seals (Pusa

caspica), northern fur seals (Callorhinus ursinus), Weddell

seals (Leptonychotes weddellii), ringed seals (Pusa hisp-

ida), and bearded seals (Erignathus barbatus) (Ikemoto

et al. 2004; Gray et al. 2008; Table 2). In addition, our

study included a broad spectrum of age classes, ontogenetic

phases, varying life history strategies, and both sexes, thus

making it more comprehensive than any previous study for

understanding the relationship between [THg] in hair and

blood of pinnipeds.

Interpretation of tissue concentrations regarding current

toxicological risk depends on the relationship between the

[THg] in sampled tissues and [THg] in tissues that directly

influence risk (Hartman et al. 2013). The utility of

[THg]hair to predict the circulating [THg]blood at the time of

sampling varied substantially among and within species,

and was influenced by a number of factors. If there is a

strong relationship between [THg]hair and [THg]blood, then

both tissues should relate similarly to recent foraging

behavior and current toxicological risk. Conversely, if

[THg]hair and [THg]blood are not strongly related at the time

of collection, then interpretation of current toxicological

risk becomes difficult. If [THg] in hair and blood are not

strongly related at the time of sampling and/or represent Hg

exposure at different time periods, then sampling both

keratinized and circulating tissues may be useful to quan-

tify Hg exposure and toxicological risk at varying temporal

scales and/or from potentially different sources (gestation

vs. lactation vs. independent foraging).

In three of the four species, the relationship between

[THg] in hair and blood in the adult pinnipeds was mod-

erately to strongly predictive. For juveniles, very young

Steller sea lion and elephant seal pups also had moderately

to strongly predictive relationships between [THg]hair and

[THg]blood. The decreased strength of the [THg]hair and

[THg]blood relationship in northern elephant seals and some

prereproductive age classes from other species suggests

that these two tissues are not always reliable predictors of

each other at the time of sampling. The strength of the

relationship for some species was affected by age class,

ontogenetic phase within an age class (e.g., weaning status,

molting status), growth, and time of year, thus indicating

that these are important factors to consider when inter-

preting [THg] in hair and blood.

In general, the strength of the relationship between

[THg]hair and [THg]blood was stronger and more consistent

in species and age classes with less intra-annual variability

in foraging behavior, in which case either tissue could be

used to link [THg] with recent behavior and current toxi-

cological risk. Adult harbor seals and female sea lions do

not have extended fasting periods associated with breeding

or molting (Pitcher and Calkins 1981; Boness et al. 1994;

Melin et al. 2000; Williams et al. 2007), and all had

[THg]hair that moderately to strongly predicted the circu-

lating pool of Hg in the blood. In contrast, northern ele-

phant seals fast for extensive periods of time during both of

these time periods (Costa et al. 1986; Worthy et al. 1992)

and [THg]hair was a poor predictor of [THg]blood in north-

ern elephant seals when hair was new (i.e., late molting),

and it had no predictive value at all other times of year

(Table 3). In addition, the catastrophic molt of elephant

seals may contribute to the poor relationship between

[THg] in hair and blood. Hair may still be a useful matrix

to predict toxicological risk in this species because it is

representative of blood [THg] at some point during the

molt, but the inability of hair to predict blood [THg] during

the majority of the year indicates that hair [THg] should not

be linked with recent foraging behavior.

In addition to differences in the strength of the predic-

tive relationship among adults of the four species, we

observed differences in the predictive relationship between

adults and juveniles within a given species. Juvenile harbor

seals and sea lions had weaker relationships between

[THg]hair and [THg]blood than adults, which could poten-

tially be explained by a combination of more variable

foraging behavior in juveniles throughout the year as well

as other factors including more rapid growth in younger
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age classes and the transition from maternal provisioning to

independent foraging (Merrick and Loughlin 1997; Lowry

et al. 2001).

The potential influence of sex on the relationship

between [THg]hair and [THg]blood was not found to improve

the ability of [THg]hair to predict [THg]blood. For example,

the best model to explain variability in [THg]blood in

northern elephant seals included sex at all time periods

except for when the hair was brand new (late in the molt

after a prolonged fasting period). However, even the best

models with [THg]hair and sex had no predictive value for

[THg]blood (Table 3). Sex was not a predictor of the rela-

tionship between [THg]hair and [THg]blood in harbor seals,

but it may still be important in pinnipeds with different

life-history strategies. For example, male and female har-

bor seals are similarly sized, nonmigratory, and assumed to

feed relatively continuously throughout the year (Boness

et al. 1994; Coltman et al. 1997). In contrast, sea lions are

sexually dimorphic, typical of otariids, and adult males can

spend more than 1 month fasting during the breeding

season (Gentry 1971), whereas adult females continue to

foraging throughout lactation (Costa 1991; Melin et al.

2000). The influence of fasting on blood [THg] (Habran

et al. 2010), in addition to other possible differences in

foraging behavior (e.g., foraging location, diet), make it

probable that the relationship between [THg]hair and

[THg]blood would differ at specific times of year between

the sexes of adult animals from some pinniped species,

such as otariids, but our study could not test this

hypothesis.

The relationship between Hg in hair and blood varied

temporally as a result of changing [THg]blood. Among all

species and age classes, the relationship between [THg]hair
and [THg]blood was strongest for adult female Steller sea

lions, which were sampled just after their annual molt. In

harbor seals that were sampled throughout the year, time

elapsed since hair growth was important in best explaining

the relationship between [THg]hair and [THg]blood (Table 3;

Fig. 4). Blood [THg] was lowest right after the annual

molt, which was likely a result of Hg depuration into the

hair. A similar trend has been observed in avian studies,

where sequestration of Hg into feathers during the molt

resulted in decreased [THg]blood (Braune 1987; Bearhop

et al. 2000). In harbor seals, the temporal increase in

[THg]blood relative to [THg]hair with increasing time since

the molt may indicate offloading during the molting period

followed by bioaccumulation of Hg between molting

periods, similar to the offloading of THg into hair observed

in mink (Wang et al. 2014). We would also expect to see

this relationship in other continuously foraging pinniped

species, although the magnitude of change might vary

depending on the level and consistency of environmental

Hg exposure and the duration of molt. Our observations

suggest that [THg]hair in nonmigratory pinnipeds with

consistent foraging behavior is likely moderately predictive

of [THg]blood for animals sampled throughout the year.

Growing animals move through a suite of ontogenetic

phases, at which point other factors in addition to [THg]hair
become important to explain the variability in [THg]blood.

For example, when nursing Steller sea lion pups (old pups)

molted their lanugo, molt status became important in

explaining the variability in [THg]blood, likely because

[THg]blood was lower after molting due to the removal of

Hg from blood during the growth of new hair. When Steller

sea lions transitioned to independent foraging, weaning

status became important to explain the variability in

[THg]blood. Before weaning, but after molting of the

lanugo, relatively low [THg]hair and [THg]blood likely

resulted from low Hg concentrations delivered in lipid-rich

milk during lactation (Tables 1, 2; Habran et al. 2011).

Therefore, after weaning, hair continues to reflect the low-

Hg diet of nursing pups until the next molt, but blood will

gradually reflect the often higher [THg] in protein-rich

marine prey (Fig. 3a). Despite our moderate to strong

ability to predict [THg]blood from [THg]hair in juvenile

Steller sea lions and harbor seals (with the inclusion of

other variables), [THg]hair was not predictive of [THg]blood
in juvenile California sea lions. This may have been par-

tially attributed to the fact that this age class included both

yearlings and older juveniles as a result of the difficulty in

the field to accurately distinguish free-ranging yearling

animals from 2-year-olds. Consequently, [THg]blood in

juvenile California sea lions should have represented

independent foraging, although some animals likely grew

hair while nursing, whereas others had grown hair while

independently foraging (Fig. 3b).

Rapid growth of developing animals can also cause a

dilution of [THg] in blood (Sakamoto et al. 2002; Acker-

man et al. 2011; Habran et al. 2011) and other compart-

ments that do not have fixed [THg], which may have

influenced some of the relationships we observed. In ele-

phant seal pups, rapid growth likely explains, in part, why

Hg concentrations in lanugo (grown in utero) were mod-

erately predictive of [THg]blood early in lactation but had

no predictive ability for [THg]blood late in lactation

(Fig. 3c). Elephant seals are one of the longer-lactating

phocids, and we sampled them at day 5 of an approxi-

mately 26-day lactation period (approximately one fifth of

the way through lactation). Some phocids lactate for much

shorter periods of time, with more intense maternal energy

transfer, which results in higher proportion of neonatal

mass gain per day (e.g., harp and hooded seals). For species

that grow and wean faster than elephant seals, it is plau-

sible that the strength of the relationship between [THg] in

lanugo and blood weakens even faster than what we

observed for elephant seals. Conversely, as we observed in
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Steller sea lion pups, the strength of the relationship

between [THg]hair and [THg]blood for species with slower

growth rates that nurse for longer periods of time, such as

otariids, may be more reliable for a longer period of time

after birth. Together, these observations suggest that the

ontogenetic phase of a developing animal is important to

understand how Hg concentrations in hair relate to Hg

concentrations in blood and potential toxicological risk.

Conclusion

We found intraspecific and interspecific variability in the

strength of the relationship between [THg] in hair and

blood likely because [THg]hair represents a ‘‘snapshot’’ of

[THg]blood at the time the hair was formed (Wang et al.

2014), but [THg] in blood may change over time. The

relationship between [THg] in hair and blood was affected

by factors including age class, weaning status, growth, and

the time difference between hair growth and sample col-

lection. Hair [THg] was moderately to strongly predictive

of [THg]blood in adults of three of the four species we

sampled but poorly predictive for the species with the

greatest fluctuation in body condition. Within species, we

found that the ability of [THg]hair alone to predict current

circulating [THg]blood was reduced in juvenile animals

compared with adults with the exception of very young

animals (14-day-old Steller sea lion and 5-day-old northern

elephant seals pups), which is similar to trends observed

between [THg] in down feathers and blood of juvenile

birds (Ackerman et al. 2011). Additional factors may

influence the relationship between [THg] in hair and blood

that were not included in our analyses, such as the varying

binding affinities for Hg in different blood compartments

(Correa et al. 2014) and rapid changes in hematocrit that

could result in significant changes in blood [THg], partic-

ularly in phocid seals (Castellini and Castellini 1989).

Regardless, we show a number of cases, both for adult and

prereproductive age classes, where [THg]hair was repre-

sentative of circulating [THg]blood, a tissue that can directly

influence current toxicological risk. In conclusion, inter-

pretation of [THg] in hair and blood in pinnipeds should

incorporate an understanding of animal life history and

molt dynamics to most accurately assess links between

[THg] and foraging behavior as well as both current and

past toxicological risk.
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