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• Available data on Hg contamination of
birds in western North America were
compiled

• Hg differed among foraging guilds, hab-
itats, species, locations, and ecoregions

• Hg was greatest in piscivores and carni-
vores, and in ocean and salt marsh
habitats

• Published toxicity benchmarks were
translated into blood-equivalent
concentrations

• Bird Hg was above toxicity benchmarks
in many areas of western North America
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Methylmercury contamination of the environment is an important issue globally, and birds are useful
bioindicators formercurymonitoring programs. The available data onmercury contamination of birds inwestern
North America were synthesized. Original data from multiple databases were obtained and a literature review
was conducted to obtain additional mercury concentrations. In total, 29219 original birdmercury concentrations
from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998
individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across
bird tissues, published equations of tissuemercury correlations were used to convert all mercury concentrations
into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among spe-
cies, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest
mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird
mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird
mercury concentrations were above toxicity benchmarks in many areas throughout western North America,
and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple
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tissueswere summarized and translated into a common blood-equivalentmercury concentration. Overall, 66% of
birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet
weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww
(moderate risk), 8% exceeded 3.0 μg/gww (high risk), and 4% exceeded 4.0 μg/gww (severe risk). Mercurymon-
itoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into
tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results in-
dicate that mercury contamination of birds is prevalent in many areas throughout western North America, and
large-scale ecological attributes are important factors influencing bird mercury concentrations.

Published by Elsevier B.V.
1. Introduction

Methylmercury contamination of the environment is an important
issue globally because of continued anthropogenic emissions of mercu-
ry over time (Driscoll et al., 2013; Eagles-Smith et al., 2016a;
Weiss-Penzias et al., 2016), its ability to biomagnify through (primarily)
aquatic food chains (Wiener et al., 2003), and its documented negative
effects on fish and wildlife (Scheuhammer et al., 2007; Wiener et al.,
2003). Birds are ubiquitous, top predators inmany aquatic and terrestri-
al habitats, and often are subjected to elevated methylmercury concen-
trations (Cristol et al., 2008; Eagles-Smith et al., 2009a). Bird
reproduction is particularly sensitive to mercury toxicity, with numer-
ous documented deleterious effects to bird health, condition, behavior,
and productivity (Table 1; Scheuhammer et al., 2007; Wiener et al.,
2003). Together, these characteristics make birds useful bioindicators
for local mercury contamination and regional monitoring programs
(Day et al., 2012; Evers et al., 2011; Monteiro and Furness, 1995;
Provencher et al., 2014; Weseloh et al., 2011).

Large-scale assessments of environmental pollution can be helpful for
understanding themajor drivers and distributions of contaminants in an-
imals. A few studies have synthesized the available data on bird mercury
contamination within the Great Lakes and northeastern regions of the
United States and Canada (Evers et al., 2011; Jackson et al., 2015) and
the Canadian Arctic (Mallory and Braune, 2012), but no such studies
exist elsewhere in North America. Western North America is character-
ized by a diverse gradient of habitats, including both extremely dry and
wet regions (National Assessment Synthesis Team, 2001). In particular,
ephemeral wetland habitats are common across western North America
(Tiner, 1984). The temporary wetting and drying of wetland habitats is
often associated with biogeochemical conditions that tend to promote
themethylation of inorganic mercury to its more toxic form, methylmer-
cury (Ullrich et al., 2001). These ephemeralwetlands also tend to be high-
ly productive and are greatly utilized by birds as foraging habitat (Murkin
et al., 1997; Niemuth et al., 2006; Skagen et al., 2008). In addition to
habitat-specific effects, mercury contamination in birds typically differs
among foraging guilds, trophic levels, and species (Anderson et al.,
2009; Blévin et al., 2013; Eagles-Smith et al., 2009a). Examining these ef-
fects over a large geographic area may identify hotspots of methylmer-
cury contamination within bird populations, aid in prioritizing
contaminant monitoring programs (Mason et al., 2005), and focus
policy-making decisions.

In this synthesis paper, the available data onmercury contamination
of birds in western North America were summarized. To do so, original,
raw data frommultiple databases were obtained and the literature was
reviewed (published articles and reports) to extractmeanmercury con-
centrations in birds for each species and site that has been studied. In
total, nearly 30000 original, individual bird mercury concentrations
from225 species were compiled, and an additional N1700meanmercu-
ry concentrations, representing nearly 20000 individuals and 176
species, from 200 publications were obtained. The goals were to de-
scribe the distribution of bird mercury contamination in western
North America, identify potential hotspots, and examine the major fac-
tors influencing bird mercury concentrations. Specifically, the influence
of species, foraging guild, habitat, ecoregion, and location on mercury
contamination were examined for western North American birds.
Additionally, the literature was reviewed, published toxicity benchmarks
were summarized, and toxicity benchmarks established in multiple bird
tissues were translated into a common blood-equivalent mercury con-
centration to integrate toxicity risk across avian life-stages and tissues.
These toxicity benchmarks were then used to assess the toxicological
risk of mercury exposure to birds in western North America.

2. Material and methods

2.1. Data acquisition: original data

Original data onmercury concentrations in individual birdswere ob-
tained from several sources. The U.S. Fish and Wildlife Service’s
Environmental Contaminants DataManagement System (ECDMS) data-
base (retrieved August 27, 2013), which contributed 25% of the data
points, is an online database that houses contaminant data collected
by government agencies. Additional original data were obtained from
the authors’ unpublished datasets at the U.S. Geological Survey (61%
of the data); Biodiversity Research Institute (12%); the multi-partner
Seabird Tissue and Archival Monitoring Project (STAMP; 2%); and
Environment Canada (b1%). The databases were then merged, data
was reviewed for quality, and the following information was extracted:
bird species, tissue type (egg, whole blood, muscle, liver, kidney, and
feathers), location (latitude and longitude), year, totalmercury ormeth-
ylmercury concentration, and units of measurement (including if data
were reported in wet weight or dry weight). When location data were
not reported within the study, study site descriptions (e.g., county or
lake names) were used to assign approximate latitudes and longitudes
using Google Earth™. Any incomplete data, including studies whose
locations could not be determined, were excluded.

2.2. Data acquisition: literature review

A thorough literature review of all peer-reviewed journal articles and
published reports documenting mercury concentrations in birds in west-
ern North Americawas conducted. Literature searcheswere conducted in
Web of Science™ and Google Scholar™. For each study, the following in-
formation was extracted: bird species, tissue type, location (latitude and
longitude), year,meanmercury concentration, units ofmeasurement (in-
cluding if data were reported in wet weight or dry weight), and sample
size. Sometimes, yearwas reported as a range and, in these cases, themid-
point was used. When year was not reported, the publication year minus
one was applied. Similarly, when sample sizes were reported as ranges,
the midpoint was used as the sample size. When composite samples
were used in a study, the number of composite samples was multiplied
by the number of individual samples within the composites to calculate
the effective sample size that was used in the study to produce the
grand mean. When mean mercury concentrations were obtainable only
fromfigures, rather than as values in a table or the text, themeanmercury
concentration was visually approximated within the figure. Within the
same study, mean mercury concentrations were kept separate for each
species and locationwhen possible; this often resulted with a single pub-
lication contributing multiple mean mercury concentrations, one mean
for each species and location within the study. When location data were
not reported within the study, study site descriptions (e.g., county and
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lake names) were used to assign approximate latitudes and longitudes
using Google Earth™.

2.3. Assigning bird taxonomy, foraging guilds, and habitats

For both the original and literature-review data, each species
was assigned to a foraging guild and general habitat type. Taxonomy
was based on the seventh edition of the American Ornithologists' Union’s
Checklist of North andMiddle American Birds (retrieved August 13, 2013
from http://checklist.aou.org/). Bird species were assigned to foraging
guilds following DeGraaf et al. (1985) with the following modifications:
(1)when a bird species occurred inmultiple foraging guilds, such as pisci-
vore and crustaceovore for several coastal seabirds, the primary foraging
guildwas used, and (2)when foraging guild differed by season (breeding,
non-breeding, or year round), the foraging guild for the breeding season
was used becausemost of themercury datawere fromeggs or adults dur-
ing the breeding season. Foraging guilds were categorized as piscivore,
carnivore, insectivore, crustaceovore,molluscovore, vermivore, omnivore,
granivore, or herbivore. Bird species were assigned to the following gen-
eral habitats: ocean, coastal, salt marsh, both fresh and brackish water,
freshwater, terrestrial-canopy, terrestrial-lower canopy, and terrestrial-
ground. Habitats were assigned using DeGraaf et al.’s (1985) classifica-
tions as well as the Birds of North America series’ (http://bna.birds.
cornell.edu/bna/) habitat descriptions. All avian taxa (including order,
family, and species), foraging guilds, and habitats are summarized in
Table S1.

2.4. GIS data layers

Geographic Information Systems (GIS; ArcGIS 10.2, Environmental
Research Systems Institute, Redlands, CA, USA) were used to attribute
each sample location with landscape variables, including ecoregion
and 100-km × 100-km grid cell. The U.S. Environmental Protection
Agency’s ecoregion level one category (Commission for Environmental
Cooperation, 1997), which separates North America into 15 distinct
ecoregions, was used and two additional categories were added: one
for samples collected in the Pacific and Arctic Oceans (including various
small islands and atolls), and one for samples collected on the Hawaiian
Islands, for a total of 17 possible ecoregions. The Create Fishnet
geoprocessing tool (ArcGIS 10.2) was used to create a grid of cells,
eachmeasuring 100 km× 100 km, across the extent of the sample loca-
tions inwestern North America, and then the Spatial Join geoprocessing
tool (ArcGIS 10.2) was used to attribute each data point with the
ecoregion and grid cell it occupied. Distribution maps of mercury con-
centrations in birds throughout western North America were produced
using ArcGIS 10.2, and overlaid on a physical base layer provided by the
U.S. National Park Service.

2.5. Data transformations and assumptions

Numerous data assumptions and transformations were necessary to
consolidate, organize, and convert various tissue types and concentra-
tion units into similar values. First, only the following tissues were
included: whole blood, eggs, muscle, liver, kidney, and fully grown
feathers. These tissues represented N98% of the available data, and
they are more readily comparable to one-another than the other avail-
able tissues, such as whole carcass. Second, data from any laboratory
dosing or artificial studies that did not represent data from wild birds
were excluded. Data from hazard assessments were included, because
the impetus for a large number of studies was a known or suspected
hazard (especially within the ECDMS dataset). Third, data were includ-
ed only for eggs, adult tissues, or post-fledged juveniles. Samples
collected from pre-fledged juveniles were excluded, because chicks
undergo rapid changes in mercury concentrations in internal tissues
as they grow and age (Ackerman et al., 2011) making any comparisons
difficult. Fourth, data for both total mercury and methylmercury were
included. All mercury in eggs (Ackerman et al., 2013), whole blood
(Rimmer et al., 2005), muscle (Scheuhammer et al., 1998), and feathers
(Thompson and Furness, 1989a) was assumed to be in the methylmer-
cury form, and, therefore, total mercury and methylmercury
concentrations were used to represent methylmercury concentrations
in birds. A significant proportion of the mercury in liver and kidney can
be in the inorganic form (Eagles-Smith et al., 2009b; Scheuhammer
et al., 1998; Thompson and Furness, 1989b). Very few data (b1%) were
available for these tissues as methylmercury concentrations, but, for
those limited data, methylmercury concentrations were transformed
into equivalent total mercury (THg) concentrations by using an adjust-
ment of 88% of THg being in the methylmercury form in liver (Eagles-
Smith et al., 2009b). This assumptionwas justified becausemost data oc-
curred below the 8.5 μg/g dry weight (dw) liver threshold where de-
methylation begins, above which a smaller proportion of THg as
methylmercury would be expected in the liver (Eagles-Smith et al.,
2009b). No adjustments were necessary for methylmercury concentra-
tions in kidney, because THg concentrations were always available
when methylmercury concentrations in kidneys were reported. Fifth, to
make the mercury data comparable across bird tissues, all tissue
concentrations were converted into blood-equivalent THg concentra-
tions (μg/g) in wet weight (ww) using multiple equations from Eagles-
Smith et al. (2008) and Ackerman et al. (2016a) detailed below. Before
using these equations, it was necessary to convert THg concentration
data fromeach tissue compartment into the sameunits, and thus allmus-
cle, liver, kidney, and feather data were converted into dry weight THg
concentrations (μg/g dw) using the reported percent moisture in the
sample. Likewise, blood data were converted into wet weight THg con-
centrations (μg/gww) using the reported percentmoisture in the sample
in the few instances (b1%) where blood was reported in dry weight.
When moisture content was not reported, an average moisture content
of 79% in blood, 67% in liver, 70% in muscle, and 74% in kidney was
used (Eagles-Smith et al., 2008). For eggs, it is important to reportmercu-
ry concentrations on a fresh wet weight (fww) basis (Ackerman et al.,
2013; Stickel et al., 1973); however, the necessary egg morphometrics
to make these adjustments were not available in many of the raw
datasets and this made the conversion to fresh wet weight not possible.
Therefore, when egg morphometric data were unavailable, egg THg con-
centrations (μg/g) were converted on a dry weight basis into a wet
weight basis using the reported percent moisture in the individual egg
or, when moisture content was not reported, an average egg moisture
content of 75%was used (Ackerman et al., 2013).When eggmorphomet-
ric data were available (i.e., authors’ data), THg concentrations on a fresh
wet weight basis (μg/g fww) were used and calculated following
Ackerman et al. (2013). In one instance, only albumen THg concentra-
tions (μg/g ww) were reported, and the albumen THg concentration
was converted into a whole-egg THg concentration (μg/g fww) using
the predictive equation in Stebbins et al. (2009), before conversion into
a blood-equivalent THg concentration. Hereafter, all egg THg concentra-
tions are reported as simply μg/g ww. For most analyses, additional data
points that were derived from the same bird, but in a different tissue,
were excluded. Prioritywas given to tissues from the same bird in the fol-
lowing order: whole blood, eggs, muscle, liver, kidney, and fully grown
feathers (see Table 2).

To convert THg concentrations in bird tissues into THg concentrations
in blood, the following equations (Eqs. (1)-(4)) from Eagles-Smith et al.
(2008), which were developed from N600 birds of 4 bird species with a
broad range of tissue THg concentrations, were used. For the feather
equation, the predictive equation for breast feathers, rather than head
feathers, was used because most of the feathers sampled are typically
body feathers and this differentiation among feather typeswas not usual-
ly reported.

ðR2 ¼ 0:90Þ : ln Blood THg μg
g ww

� �
¼ 1:080� ln BirdMuscle THg μg

g dw

� �
� 1:024

ð1Þ

http://checklist.aou.org
http://bna.birds.cornell.edu/bna/
http://bna.birds.cornell.edu/bna/


Table 1
Summary of toxicity benchmarks for the effects ofmethylmercury exposure on birds. Toxicity benchmarkswere translated from the original tissue fromwhich theywere derived into blood-equivalent units using correlationalmodels of totalmercury
concentrations between blood and various tissues. The table is sorted from the lowest to the highest blood-equivalent totalmercury concentrationwhere a toxic effect ofmethylmercury on birdswas observed. Effects on juvenile birdswere excluded
due to the temporal complexity of methylmercury concentrations in chicks as they age, and the inability to reliably translate chick total mercury concentrations into equivalent total mercury concentrations in adult blood. Acronyms are blood =
whole blood; RBCs = red blood cells; ww = wet weight; dw = dry weight; fww = fresh wet weight; THg = total mercury concentration; MeHg = methylmercury concentration; LC50: lethal concentration where 50% mortality occurs; na =
no equation was needed to translate into blood total mercury concentration.

Original tissue THg

Impairment category Hg toxicity effect
Blood-equivalent
THg (μg/g ww) Tissue Benchmark Units Bird species Studya

Blood-equivalent
equationb,c

Health and physiology Oxidative stress response: negative relationship with
thiobarbituric acid activity (below this concentration)d

0.2 Liver 1.60 μg/g dw Lesser Scaup Custer et al. (2000) 1

Health and physiology Altered gene expression in females
(below this concentration)d

0.3 RBCs 1.20 μg/g dw Double-crested Cormorant Gibson et al. (2014) 2

Reproduction Median for males that raised only 1 of 2 chicks; no males
above this threshold successfully raised 2 chicks

0.3 RBCs 1.20 μg/g dw Black-legged Kittiwake Tartu et al. (2015b) 2

Reproduction Decreased egg hatchability
(mean of eggs from dosed females)

0.3 Egg 0.15 μg/g ww Ring-necked Pheasant Spann et al. (1972)a 3

Reproduction Median for birds that skipped breeding (higher than birds
that bred); altered hormones

0.4 RBCs 2.00 μg/g dw Black-legged Kittiwake Tartu et al. (2013) 2

Behavioral Increased egg neglect for males
(lower concentrations had no observed egg neglect)

0.4 RBCs 2.00 μg/g dw Snow Petrel Tartu et al. (2015a) 2

Reproduction Egg hatchability: LC50 of egg-injected birds ranked as high
sensitivity to MeHg

0.5 Egg 0.25 μg/g ww Multiple Heinz et al. (2009a)a 3

Reproduction 10% reduction in probability of nest success 0.7 Blood 0.70 μg/g ww Carolina Wren Jackson et al. (2011a) na
Reproduction 13% decrease in productive nests; altered courtship behaviors

(mean of dosed birds)
0.7 Blood 0.73 μg/g ww White Ibis Frederick and Jayasena (2010)a na

Reproduction Probability of breeding successfully the subsequent year
drops below 50%

0.8 RBCs 3.90 μg/g dw South Polar Skua Goutte et al. (2014) 2

Reproduction Proposed indicative concentration for impaired reproduction
(review)

0.8 Liver 2.00 μg/g ww Multiple Shore et al. (2011) 1

Reproduction 10% reduction in max. productivity 0.9 Blood 0.90 μg/g ww Common Loon Burgess and Meyer (2008) na
Health and physiology Negative relationship with cortisol

(below this concentration)d
1.0 Blood 1.00 μg/g ww Tree Swallow Franceschini et al. (2009) na

Reproduction Decreased egg hatchability 1.1 Egg 0.50 μg/g ww Ring-necked Pheasant Fimreite (1971) 3
Health and physiology MeHg demethylation threshold in liver 1.2 Liver 8.51 μg/g dw Forster's Tern, Caspian Tern,

American Avocet, Black-necked
Stilt

Eagles-Smith et al. (2009b) 1

Reproduction 20% reduction in probability of nest success 1.2 Blood 1.20 μg/g ww Carolina Wren Jackson et al. (2011a) na
Reproduction Egg hatchability: LC50 of egg-injected and maternally derived

MeHg
1.2 Egg 0.56 μg/g ww Thick-billed Murre Braune et al. (2012)a 3

Health and physiology Glutathione metabolism and antioxidant activity
(effect on associated enzymes below this concentration)d

1.2 Liver 9.00 μg/g dw Ruddy Duck Hoffman et al. (1998) 1

Reproduction Decrease in productivity 1.3 Egg 3.00 μg/g dw Merlin Newton and Haas (1988) 3
Reproduction Proposed indicative concentration for impaired reproduction

(review)
1.3 Egg 0.60 μg/g ww Multiple Shore et al. (2011) 3

Behavioral Impaired behavior (review) 1.4 Diet (fish) 0.10 μg/g ww Common Loon Depew et al. (2012) 4
Health and physiology Negative relationship with body condition

(below this concentration)d
1.6 Blood 1.56 μg/g ww Clapper Rail Ackerman et al. (2012) na

Reproduction Decreased egg hatchability (mean of contaminated site) 1.6 Egg 2.86 μg/g dw House Wren Custer et al. (2007) 3
Reproduction 15% decrease in productive nests; altered courtship behaviors

(mean of dosed birds)
1.6 Blood 1.60 μg/g ww White Ibis Frederick and Jayasena (2010)a na

Reproduction 30% reduction in probability of nest success 1.7 Blood 1.70 μg/g ww Carolina Wren Jackson et al. (2011a) na
Reproduction Impaired reproduction 1.8 Egg 0.80 μg/g ww Mallard Heinz (1979)a 3
Reproduction 23% reduction in max. productivity 2.0 Blood 2.00 μg/g ww Common Loon Burgess and Meyer (2008) na
Health and physiology Proposed concentration for adverse effects in waterbirds

(review)
2.0 Liver 5.00 μg/g ww Multiple Zillioux et al. (1993) 1

Reproduction Impaired productivity (review) 2.1 Diet (fish) 0.18 μg/g ww Common Loon Depew et al. (2012) 4
Reproduction Probability of successfully raising 2 chicks the subsequent 2.1 RBCs 10.00 μg/g dw Brown Skua Goutte et al. (2014) 2
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year drops below 50%
Reproduction 40% reduction in probability of nest success 2.1 Blood 2.10 μg/g ww Carolina Wren Jackson et al. (2011a) na
Reproduction General impaired hatchability and embryonic mortality

(review)
2.3 Egg 1.00 μg/g fww Multiple Scheuhammer et al. (2007) 3

Reproduction Egg hatchability: LC50 of egg-injected birds ranked as
moderate sensitivity to MeHg

2.3 Egg 1.00 μg/g ww Multiple Heinz et al. (2009a)a 3

Reproduction 50% reduction in probability of nest success 2.5 Blood 2.50 μg/g ww Carolina Wren Jackson et al. (2011a) na
Reproduction Egg hatchability: LC50 of egg-injected and maternally derived

MeHg
2.5 Egg 1.10 μg/g ww Arctic Tern Braune et al. (2012)a 3

Reproduction 10% probability of embryo being malpositioned in egg 2.7 Egg 1.20 μg/g fww Forster's Tern Herring et al. (2010) 3
Reproduction Impaired productivity 2.8 Diet (fish) 0.30 μg/g ww Common Loon Barr (1986) 4
Health and physiology Decreased immunocompetence (mean of contaminated site) 2.9 Blood 2.85 μg/g ww Tree Swallow Hawley et al. (2009) na
Reproduction 35% reduction in max. productivity 3.0 Blood 3.00 μg/g ww Common Loon Burgess and Meyer (2008) na
Reproduction Reproductive failure 3.0 Blood 3.00 μg/g ww Common Loon Evers et al. (2008) na
Reproduction Decreased hatching and fledging success when ambient

temps. increased (mean of contaminated site)
3.0 Blood 3.03 μg/g ww Tree Swallow Hallinger and Cristol (2011) na

Health and physiology Suggested threshold above which demethylation occurs in a
dose dependent relationship

3.2 Liver 8.00 μg/g ww Black-crowned Night-heron,
Snowy Egret, Double-crested
Cormorant

Henny et al. (2002) 1

Reproduction 20% probability of embryo being malpositioned in egg 3.2 Egg 1.40 μg/g fww Forster's Tern Herring et al. (2010) 3
Reproduction Failed productivity (review) 3.4 Diet (fish) 0.40 μg/g ww Common Loon Depew et al. (2012) 4
Reproduction Severe impaired productivity 3.4 Diet (fish) 0.40 μg/g ww Common Loon Barr (1986) 4
Reproduction Decreased egg hatchability 3.5 Egg 1.50 μg/g ww Ring-necked Pheasant Fimreite (1971) 3
Reproduction Decreased productivity for first time breeding females

(in 1 of 2 years of study; mean of contaminated site)
3.6 Blood 3.56 μg/g ww Tree Swallow Brasso and Cristol (2008) na

Reproduction 30% probability of embryo being malpositioned in egg 3.6 Egg 1.55 μg/g fww Forster's Tern Herring et al. (2010) 3
Reproduction 14% decrease in productive nests; altered courtship

behaviors; higher proportion of same sex nest pairs
(mean of dosed birds)

4.0 Blood 3.95 μg/g ww White Ibis Frederick and Jayasena (2010)a na

Reproduction 40% probability of embryo being malpositioned in egg 4.0 Egg 1.69 μg/g fww Forster's Tern Herring et al. (2010) 3
Reproduction 46% reduction in max. productivity 4.0 Blood 4.00 μg/g ww Common Loon Burgess and Meyer (2008) na
Reproduction 16% reduction in reproductive success 4.0 Blood 4.00 μg/g ww Zebra Finch Varian-Ramos et al. (2014)a na
Reproduction Egg hatchability: LC50 of egg-injected and maternally derived

MeHg
4.2 Egg 1.78 μg/g ww Common Loon Kenow et al. (2011)a 3

Reproduction Egg hatchability: LC50 of egg-injected birds ranked as low
sensitivity to MeHg

4.2 Egg 1.79 μg/g ww Multiple Heinz et al. (2009a)a 3

Reproduction 50% probability of embryo being malpositioned in egg 4.3 Egg 1.82 μg/g fww Forster's Tern Herring et al. (2010) 3
Reproduction 50% reduction in max. productivity 4.3 Blood 4.30 μg/g ww Common Loon Burgess and Meyer (2008) na
Reproduction Decreased egg hatchability (mean of contaminated site) 4.3 Egg 7.34 μg/g dw Tree Swallow Custer et al. (2007) 3
Health and physiology Glutathione metabolism and antioxidant activity

(effect on associated enzymes below this concentration)d
4.6 Liver 35.00 μg/g dw Surf Scoter Hoffman et al. (1998) 1

Reproduction 24% decline in young fledged per pair
(over this concentration)

4.8 Egg 2.00 μg/g ww American Kestrel Albers et al. (2007)a 3

Health and physiology Impaired macrophage phagocytosis (below this
concentration)d

6.4 Blood 6.40 μg/g ww Black-footed Albatross Finkelstein et al. (2007) na

Reproduction Decreased offspring survival (mean of dosed birds) 6.6 Muscle 4.50 μg/g ww Black Duck Finley and Stendell (1978)a 5
Reproduction 31% reduction in reproductive success, greater number of

days to renesting (mean of dosed birds)
8.0 Blood 8.00 μg/g ww Zebra Finch Varian-Ramos et al. (2014)a na

Health and physiology Glutathione metabolism and antioxidant activity (effect on
associated enzymes below this concentration)d

8.5 Liver 66.00 μg/g dw Greater Scaup Hoffman et al. (1998) 1

Mortality Proposed indicative concentration for death (review) 8.5 Liver 22.00 μg/g ww Multiple Shore et al. (2011) 1
Health and physiology Effects on some bioindicators of oxidative stress (below this

concentration)d
8.8 Liver 69.00 μg/g dw Forster's Tern, Caspian Tern Hoffman et al. (2011) 1

Reproduction Decreased offspring survival (mean of dosed birds) 9.0 Liver 23.10 μg/g ww Black Duck Finley and Stendell (1978)a 1
Reproduction Reproductive impairment

(mean from lake with decreased reproduction)
9.1 Egg 3.65 μg/g ww Common Tern Fimreite (1974) 3

Health and physiology Decreased energy expenditure for flight takeoff; altered molt
sequence (mean of dosed birds)

9.8 Blood 9.80 μg/g ww European Starling Carlson et al. (2014)a na
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Table 1 (continued)

Original tissue THg

Impairment category Hg toxicity effect
Blood-equivalent
THg (μg/g ww) Tissue Benchmark Units Bird species Studya

Blood-equivalent
equationb,c

Mortality Proposed concentration for mercury toxicity (review) 11.5 Liver 30.00 μg/g ww Multiple Thompson (1996) 1
Reproduction Lethality to embryo (mean of eggs from dosed females) 13.0 Egg 5.10 μg/g ww Black Duck Finley and Stendell (1978)a;

from Shore et al. (2011)
3

Behavioral Mass loss and altered foraging behavior in response to
simulated predator (mean of dosed birds)

13.9 Blood 13.93 μg/g ww Zebra Finch Kobiela et al. (2015)a na

Behavioral Visible neurotoxicity; impaired movement
(mean of dosed birds)

16.4 Liver 43.00 μg/g ww Zebra Finch Scheuhammer (1988)a 1e

Reproduction 42% reduction in reproductive success, greater number of
days to renesting (mean of dosed birds)

17.0 Blood 17.00 μg/g ww Zebra Finch Varian-Ramos et al. (2014)a na

Mortality Death; swelling of axons; loss of myelin (below this
concentration)d

18.1 Muscle 11.40 μg/g Red-tailed Hawk Fimreite and Karstad (1971)a 5e

Mortality Death (mean concentration for dead birds: review) 23.7 Liver 63.00 μg/g ww Multiple Shore et al. (2011) 1e

Health and physiology Decreased enzymes associated with oxidative stress
(mean of dosed birds)

24.4 Liver 65.00 μg/g ww Mallard Hoffman and Heinz (1998)a 1e

Mortality Death (mean of dosed birds that died) 27.3 Liver 73.00 μg/g ww Zebra Finch Scheuhammer (1988)a 1e

Reproduction 50% reduction in reproductive success, greater number of
days to renesting (mean of dosed birds)

31.0 Blood 31.00 μg/g ww Zebra Finch Varian-Ramos et al. (2014)a na

Health and physiology Acute inflammatory response; physiological stress
(mean of dosed birds)

41.7 Blood 41.71 μg/g ww American Kestrel Fallacara et al. (2011)a na

Mortality Visible neurotoxicity; some death (mean of dosed birds) 45.0 Blood 45.00 μg/g ww American Kestrel Bennett et al. (2009)a na
Health and physiology Effects on brain neurotransmitters (below this

concentration)d
48.2 Liver 397.00 μg/g dw Bald Eagle Scheuhammer et al. (2008) 1e

Mortality Death (mean of dosed birds that died) 51.4 Muscle 30.00 μg/g ww Grackle Finley et al. (1979)a 5e

Mortality Death (mean of dosed birds that died) 54.2 Muscle 31.50 μg/g ww Cowbird Finley et al. (1979)a 5e

Health and physiology Decreased ability to mount a stress response (below this
concentration)d

57.0 Blood 57.00 μg/g ww Zebra Finch Moore et al. (2014)a na

Health and physiology Effects on brain neurotransmitters (below this
concentration)d

65.2 Liver 542.00 μg/g dw Common Loon Scheuhammer et al. (2008) 1e

Mortality Death (mean of dosed birds that died) 71.4 Muscle 40.70 μg/g ww Starling Finley et al. (1979)a 5e

Mortality Death (mean of dosed birds that died) 94.0 Blood 94.00 μg/g ww American Kestrel Bennett et al. (2009)a na
Mortality Death (mean of dosed birds that died) 103.0 Muscle 57.10 μg/g ww Redwing Blackbird Finley et al. (1979)a 5e

a Indicates a captive feeding study with dosed birds.
b Equations used to translate toxicity benchmark to bird blood-equivalent units:

(Eq. (1)) lnðBlood THg μg
g wwÞ ¼ 0:970� lnðBirdLiver THg μg

g dw
Þ � 1:929 (R2 = 0.88; Eagles-Smith et al., 2008)

(Eq. (2)) Results for THg concentrations in red blood cells were reported as μg/g dw, without any estimate of percent moisture available. Therefore, we assumed a percent moisture of 79% (see Eagles-Smith et al., 2008) to convert μg/g dw to μg/g ww.
(Eq. (3)) lnðFemaleBirdBlood THg μg

g wwÞ ¼ 1:0734� lnðEgg THg μg
g fwwÞ þ 0:8149 (R2 = 0.95; Ackerman et al., 2016a)

(Eq. (4)) lnðFemaleBirdBlood THg μg
g wwÞ ¼ 0:6182� lnðPreyFish THg μg

g wwÞ þ 1:788 (Ackerman et al., 2015)
(Eq. (5)) lnðBlood THg μg

g wwÞ ¼ 1:080� lnðBirdMuscle THg μg
g dw

Þ � 1:024 (R2 = 0.90; Eagles-Smith et al., 2008)
c Moisture content from the studywas used if reported. If it was not reported, amoisture content of 67% in liver, 75% in eggs, 70% inmuscle, and 79% in bloodwas used (Eagles-Smith et al., 2008). If wet weight vs dry weight was not reported, wet

weight (muscle) was assumed.
d For correlative studies with a relationship between THg concentration and an effect, the highest observed THg concentration was reported and stated that the relationship was observed “below this concentration.”
e THg concentrations in these captive studies had highly-dosed birds with liver or muscle THg concentrations outside of the range of data used to generate the equations to translate tissue THg concentrations to blood-equivalent units, and blood-

equivalent THg concentrations should be interpreted with caution.
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R2 ¼ 0:88
� �

: ln Blood THg μg
g ww

� �
¼ 0:970� ln BirdLiver THg μg

g dw

� �
� 1:929

ð2Þ

R2 ¼ 0:87
� �

: ln Blood THg μg
g ww

� �
¼ 1:003� ln BirdKidney THg μg

g dw

� �
� 2:008

ð3Þ

R2 ¼ 0:32
� �

: ln Blood THg μg
g ww

� �
¼ 0:673� ln BirdFeather THg μg

g dw

� �
� 1:673

ð4Þ

To convert THg concentrations in eggs into equivalent THg
concentrations in blood, the following equation (Eq. (5)) from
Ackerman et al. (2016a), that was developed using 83 females and
their full clutches for 3 species with a broad range of tissue THg concen-
trations, was used:

R2 ¼ 0:95
� �

: ln FemaleBirdBlood THg μg
g ww

� �

¼ 1:0734� ln Egg THg μg
g fww

� �
þ 0:8149

ð5Þ

These tissue conversion Eqs. (1)-(5) were developed for multiple
species and used the largest sample sizes currently available, and there-
fore represent the best available conversion equations for multiple
species. However, these equations were developed for four species in
the order Charadriiformes and may not be representative of all bird
species.

2.6. Statistical analysis

Linearmixed-effectsmodelswere used to examine factors influencing
blood-equivalent THg concentrations in birds. Separate analyses were
conducted for the two types of datasets: original raw data and the
literature-review data. This separation ensured that data were not
pseudoreplicated within the analyses because some of the original raw
datasets were used to publish journal articles and reports that were sum-
marized in the literature reviewdataset. THg concentrations in birdswere
loge-transformed (natural log denoted as ln in equations) to improve nor-
mality. Back-transformed least squaresmeans are reportedwith standard
errors that were estimated using the delta method (Seber, 1982).

For the original raw dataset, loge-transformed blood-equivalent THg
concentration was the dependent variable; foraging guild (9 guilds),
habitat (8 habitats), and ecoregion (11 ecoregions) were fixed factors;
and grid cell (432 grid cells each 100 km × 100 km), year (29 years:
1982-2015), and species (225 species) were random factors. To
compare THg concentrations among species without the inclusion of
habitat and foraging guild, a separate analysis was conducted where
loge-transformed blood-equivalent THg concentration was the depen-
dent variable; species was a fixed factor; and grid and year were
random factors. To examine the spatial distribution of THg in birdswith-
out the inclusion of habitat and foraging guild, an additional analysis
was conducted where loge-transformed blood-equivalent THg concen-
tration was the dependent variable; grid was a fixed factor; and species
and yearwere random factors. This same analysis was repeated for each
guild with sample sizes N5000 (within a guild) to specifically examine
the distribution of THg in birds in the piscivore (n=10243), insectivore
(n=8464), and omnivore (n=6685) guilds.

For the literature-review dataset, loge-transformed mean blood-
equivalent THg concentration was the dependent variable; foraging
guild (8 guilds), habitat (8 habitats), and ecoregion (15 ecoregions)
were fixed factors; and grid cell (313 grid cells), year (46 years: 1968-
2013), and species (176 species) were random factors. For this analysis,
blood-equivalent mean THg concentrations were weighted by the
square-root of the study’s effective sample size (i.e., the number of
individuals used to estimate the mean), which placed more emphasis
on the mean estimates that were derived from larger sample sizes. To
compare mean THg concentrations among species without the inclu-
sion of habitat and foraging guild, an analysis was conducted where
loge-transformed mean blood-equivalent THg concentration was the
dependent variable; species was a fixed factor; and grid and year were
random factors. To examine the distribution of mean THg concentra-
tions in birds without the inclusion of habitat and foraging guild, an
additional analysis was conducted where loge-transformed mean
blood-equivalent THg concentration was the dependent variable; grid
was a fixed factor; and species and year were random factors.

2.7. Literature review ofmercury toxicity to birds and translation of toxicity
benchmarks into a common blood-equivalent tissue

A thorough literature review was conducted and published toxicity
benchmarks for all bird tissues were summarized (Table 1). These
toxicity benchmarks were then integrated across avian tissues and life-
stages into a single toxicity benchmark based on blood-equivalent THg
concentrations. To do so, equations and assumptions noted in Table 1’s
footnoteswere used to convert each of the toxicity benchmarks in various
tissues into blood-equivalent THg concentrations. These equations and
assumptions are described in more detail in Section 2.5.

3. Results & Discussion

Original, raw data on THg concentrations in 29219 samples were
obtained for 225 bird species. Most of the available data were for eggs
(69%), followed by blood (16%), liver (7%), feathers (3%), kidney (3%),
andmuscle (2%). For most analyses, 1590 data points that were derived
from the same bird, but in a different tissue, were excluded yielding a
final sample size of 27629 birds. THg concentrations are summarized
by species and tissues in Tables S2-S8. From the literature, 1712 mean
THg concentrations were obtained for 176 bird species, representing
19998 individuals, from 200 publications (Supplementary Material:
References). Fig. 1a displays the distribution of THg concentrations
using the original, raw data and Fig. 1b displays the distribution of
mean THg concentrations using data from the literature review.

3.1. Factors influencing bird mercury: original raw data

Bird blood-equivalent THg concentrations differed among
foraging guilds (F8,192.3=11.72, pb0.0001; Fig. 2a) and habitat types
(F7,349.1=12.69, pb0.0001; Fig. 2b), but did not differ among ecoregions
(F10,949.1=0.93, p=0.50). Piscivores (0.33±0.05 μg/g ww) and carni-
vores (0.32±0.10 μg/g ww) exhibited the greatest blood-equivalent
least squares mean THg concentrations, whereas herbivores
(0.03±0.01 μg/g ww) and granivores (0.02±0.01 μg/g ww) exhibited
the lowest blood-equivalent least squares mean THg concentrations.
These results are consistent with other studies that have found that
birds foraging at higher trophic levels often have higher THg concentra-
tions due to the biomagnification of methylmercury through food
chains (Anderson et al., 2009; Blévin et al., 2013). In contrast, birds
foraging on plants and seeds at the base of the food chain had substan-
tially lower THg concentrations. Although these results were expected
based on the ability of methylmercury to biomagnify, this is the first
study to demonstrate differences in THg concentrations among such a
wide range of foraging guilds.

Bird blood-equivalent least squares mean THg concentrations
were greatest in ocean (0.49±0.22 μg/g ww) and salt marsh
(0.31±0.07 μg/gww)habitats and lowest in terrestrial-ground habitats
(0.04±0.01 μg/g ww; Fig. 2b). Aquatic environments have biogeo-
chemical conditions that are more conducive to methylation andmeth-
ylmercury is more prevalent in aquatic than terrestrial ecosystems
(Ullrich et al., 2001); therefore, it was not surprising that THg
concentrations in birds would be lower in terrestrial than aquatic envi-
ronments. However, some terrestrial birds can receive substantial



Table 2
Suggested tissues for sampling bird mercury contamination.

Priority Age Tissue Mercury Analysis Most THg in MeHg form? Units Represents Reference

High Adult Blood THg Yes wet weight or dry weight Hg in adult and egg (if a breeding female) Henny et al. (2002); Evers et al. (2003); Rimmer et al.
(2005); Eagles-Smith et al. (2008); Brasso et al. (2010);
Heinz et al. (2010); Kenow et al. (2015); Ou et al. (2015);
Ackerman et al. (2016a)

High Egg Eggs THg Yes fresh wet weight Hg in egg and adult; direct link to
reproduction

Ackerman et al. (2013); Ackerman et al. (2016a)

High Chick Feathers (down) THg Yes dry weight Hg in egg; highly correlated Ackerman and Eagles-Smith (2009); Kenow et al. (2011)
Moderate Egg Egg albumen THg Yes wet weight Hg in whole egg; direct link to reproduction Kennamer et al. (2005); Bond and Diamond (2009); Stebbins

et al. (2009)
Moderate Adult Muscle THg Yes dry weight Hg in adult and egg (if a breeding female) Finley and Stendell (1978); Scheuhammer et al. (1998);

Eagles-Smith et al. (2008); Ackerman et al. (2016a)
Moderate Adult Liver MeHg No dry weight Hg in adult and egg (if a breeding female) Finley and Stendell (1978); Henny et al. (2002); Eagles-Smith

et al. (2008); Eagles-Smith et al. (2009b); Ackerman et al.
(2016a)

Moderate Adult Kidney MeHg No dry weight Hg in adult and egg (if a breeding female) Finley and Stendell (1978); Henny et al. (2002); Eagles-Smith
et al. (2008); Ackerman et al. (2016a)

Moderate Adult Brain MeHg No dry weight Hg in adult Finley and Stendell (1978); Scheuhammer et al. (2008)
Low Adult Feathers (fully-grown) THg Yes dry weight Poor correlation with Hg in internal tissues

and eggs for most birds; exceptions are for
species with limited movements

Thompson and Furness (1989a); Brasso and Cristol (2008);
Eagles-Smith et al. (2008); Jackson et al. (2011a); Ackerman
et al. (2012); Ackerman et al. (2016a)

Low Egg Egg yolk THg Yes wet weight Hg in whole egg; moderate correlation Kennamer et al. (2005); Bond and Diamond (2009)
Low Egg Egg shell THg Unknown dry weight Hg in whole egg; moderate correlation Kennamer et al. (2005)
Low Chick Blood THg Yes wet weight or dry weight Hg changes rapidly with chick age Kenow et al. (2007); Ackerman et al. (2011)
Extra Low Chick Feathers (fully-grown) THg Yes dry weight Very poor correlation with Hg in internal

tissues
Ackerman et al. (2011)

Extra Low Adult Feathers
(primary flight feathers)

THg Yes dry weight Very poor correlation with Hg in internal
tissues; large variability among feathers and
along length of feather

Furness et al. (1986); Braune and Gaskin (1987); Braune
(1987); Dauwe et al. (2003)
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Fig. 1. Blood-equivalent totalmercury (THg) concentrations in birds acrosswesternNorth America using (A) original data (n=27,629 individual samples) and (B)meandata derived from
a literature review(n=1,712means, representingn=19,998 individual samples). All (A) individual and (B)meandata points are shown,with lower THg concentrations as larger symbols
in the background and higher THg concentrations as smaller symbols in the foreground.
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aquatic subsidies of methylmercury through emergent aquatic insects
and the associated food web (Cristol et al., 2008; Jackson et al.,
2011b), so some terrestrial species can be exposed to higher
methylmercury levels than would be assumed based upon their terres-
trial foraging habits. Ocean and estuary environments tended to have
birds with higher THg concentrations than those in freshwater



Fig. 2. Least squares (LS)mean± standard error blood-equivalent totalmercury (THg) concentrations in birds among (A) foraging guilds and (B) habitats inwesternNorth America using
original data at the individual level (black-filled bars; n=27,629 individual samples) and mean data derived from a literature review (hatched bars; n=1,712 means, representing
n=19,998 individual samples). LS mean blood-equivalent THg concentrations were estimated separately for each dataset from models with foraging guild, habitat, and ecoregion as
fixed effects, and grid cell, year, and species as random effects. Different letters next to bars denote significant (pb0.05) differences between means for the raw dataset (capital letters)
and literature-review dataset (lower case letters).
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environments. This difference could be due to several mechanisms, in-
cluding differences in bioavailable methylmercury (such as differences
in biogeochemical conditions, inorganicmercury availability, andmeth-
ylmercury production; Ullrich et al., 2001), generally more complex
food web structures and longer food-chain lengths in oceans and estu-
aries compared to smaller freshwater ecosystems (Post, 2002), or the
ecology of bird species in these different habitats.

Blood-equivalent THg concentrations also differed among bird
species (F224,22076=130.79, pb0.0001; Fig. 3; Figs. S1-S7; Table S8).
In particular, Forster’s terns had the highest least squares mean blood-
equivalent THg concentrations of any species with sample sizes
≥60 (Fig. 3), which is the approximate sample size necessary to esti-
mate a population’s mean THg concentration with 10% accuracy
(Ackerman et al., 2016b). Blood-equivalent geometric mean THg
concentrationswere 2.35 μg/g ww in Forster’s terns (5th to 95th percen-
tile: 0.87-6.39 μg/g ww; Table S8). For comparison, common loons in
the west, another piscivore that is well studied throughout North
America, had a blood-equivalent geometric mean THg concentration
of 0.89 μg/g ww (5th to 95th percentile: 0.25-3.90 μg/g ww; Table S8).
Some other species with notably high blood-equivalent geometric
mean THg concentrations were pigeon guillemots (2.08 μg/g ww),
Caspian terns (1.58 μg/g ww), least terns (1.15 μg/g ww), black
skimmers (0.90 μg/g ww), Clark’s grebes (0.83 μg/g ww), and black-
necked stilts (0.79 μg/g ww; Table S8).

Blood-equivalent THg concentrations of individual birds were above
common toxicity benchmarks (Table 1) in many areas throughout
western North America (Fig. 1a). In particular, multiple individuals
exhibited THg concentrations above 3.0 μg/g ww in San Francisco Bay,
California; Central Valley, California; Carson River watershed, Nevada;
Great Salt Lake, Utah; northeastern Washington; northeastern Mon-
tana; multiple sites along the Missouri River; southern Arizona; the
Gulf Coast of Texas; Alaska’s North Slope; and the Aleutian Archipelago.
These individuals typically were from species belonging to upper
trophic level guilds, such as piscivores and carnivores.

To examine spatial variation in mercury exposure of birds that
accounted for differences in THg concentrations among species, the distri-
bution of blood-equivalent THg concentrations in birds alsoweremapped
using model-estimated least squares means within 100-km × 100-km



Fig. 3. Least squares (LS) mean± standard error blood-equivalent total mercury (THg) concentrations among bird species in western North America using original data at the individual
level. Only species with sample sizes ≥60 are displayed; see Figs. S2-S7 for a complete listing of species by taxanomic order. LS mean blood-equivalent THg concentrationswere estimated
from a model with species as a fixed effect, and grid cell and year as random effects.
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grid cells across western North America. As expected, bird blood-
equivalent THg concentrations differed among grid cells
(F431,26126=20.67, pb0.0001; Fig. 4a). Model-estimated mean THg con-
centrations were greatest in coastal California, western Nevada, and
Alaska’s North Slope (Fig. 4a). Other apparent hotspots, such as those in
other parts of Alaska, British Columbia, Hawaiian Islands, and thewestern
contiguous United States, had high THg concentrations but low sample
sizes (typically b15; Fig. 4b) and high coefficients of variation (N25%;
Fig. 4c) making interpretation at these sites more difficult. The analysis
was repeated separately for each guildwith a sample size N5000 and sim-
ilar results were generally found for the piscivore (Fig. 5a), insectivore
(Fig. 5b), and omnivore guilds (Fig. 5c). THg concentrations were com-
pared among guilds when they overlapped in the same grid cell. The
strength of the correlations between guild-specific least squares mean
blood-equivalent THg concentrations within grid cells varied among
guilds, although the relationships were always positive (Pearson
correlations; omnivore vs insectivore: n=79 grid cells, r=0.47,
pb0.0001; omnivore vs piscivore: n=56 grid cells, r=0.24, p=0.08; pi-
scivore vs insectivore: n=69 grid cells, r=0.16, p=0.19).

3.2. Factors influencing bird mercury: literature review

Bird blood-equivalent least squaresmean THg concentrations differed
among foraging guilds (F7,167.1=16.01, pb0.0001; Fig. 2a), habitat types
(F7,211=2.86, p=0.01; Fig. 2b), and ecoregions (F14,283.3=2.08, p=0.01;
Fig. 6). Carnivores (0.37±0.15 μg/gww) and piscivores (0.31±0.09 μg/g
ww) exhibited the greatest blood-equivalent least squares mean THg
concentrations, whereas herbivores (0.01±0.01 μg/g ww) exhibited
the lowest blood-equivalent least squares mean THg concentrations. As
observed in the raw dataset, bird blood-equivalent least squares mean
THg concentrations were highest in salt marsh (0.35±0.28 μg/g ww)
and ocean (0.23±0.08 μg/g ww) habitats and lowest in terrestrial-
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ground habitats (0.04±0.01 μg/g ww). Among ecoregions, bird blood-
equivalent least squares mean THg concentrations were greatest in
tropical dry forests (0.22±0.13 μg/g ww) and tundra habitats
(0.22±0.06 μg/g ww) and lowest in temperate Sierras (0.06±0.03
μg/g ww) and southern semi-arid highlands (0.04±0.02 μg/g ww),
but pair-wise comparisons suggested few statistically significant differ-
ences among ecoregions (Fig. 6).

Similar to the raw dataset, bird blood-equivalent mean THg
concentrations differed among species (F177,1427=10.61, pb0.0001;
Figs. S8-S14) and grid cells (F312,1195=4.17, pb0.0001; Fig. 7a).
Model-estimated mean bird THg concentrations based on the literature
data alsowere highest in central and coastal California,westernNevada,
Alaska’s North Slope, and the Aleutian Islands (Fig. 7a). Additional
hotspots were present throughout the west, although several of
these additional sites had low sample sizes (typically b15; Fig. 7b)
and high coefficients of variation (N25%; Fig. 7c). To directly compare
the raw data (432 grid cells) to the literature data (313 grid cells),
model-estimated mean bird THg concentrations within the 165 grid
cells (100 km2) that contained both raw data and literature-review
datawere correlated. Least squaresmean blood-equivalent THg concen-
trations were positively correlated between the two separate datasets,
although the strength of the correlationwasmoderate (Pearson correla-
tion; r=0.34; pb0.0001).

3.3. Hotspots of bird mercury contamination in western North America

From the raw and literature-review data analyses, hotspots were
identified in western North America for mercury contamination in
birds. Several of these identified hotspots were common to both the
Fig. 4. Blood-equivalent total mercury (THg) concentrations in birds across western North Ame
The map displays grid cells by their percentile of least squares (LS) mean THg concentration re
mean THg concentrationswere estimated fromamodelwith grid cell as afixed effect, and specie
coefficient of variation (as a percentage) for themodel-estimated LSmean THg concentration in
estimated blood-equivalent THg concentration in individual grid cells. The darker graduation
lower confidence in the model-estimated LS mean THg concentrations in those grid cells.
raw and literature-review datasets, including the western Aleutian
Islands, Alaska’s North Slope, Great Basin (especially western Nevada),
and San Francisco Bay and Central Valley of California (Figs. 4 and 7).
To facilitate visualization of avianmercury exposure risk acrosswestern
North America, a comprehensivemap (Fig. 8)was produced by combin-
ing the maps developed from the raw data and the literature-review
data. When a grid cell contained THg concentration estimates from
both analyses, priority was given to the estimate derived from the raw
data and excluded the literature review-derived estimate for that grid
cell. All grid cells that contained least squares mean blood-equivalent
THg concentrations that were above the 80th percentile of the entire
dataset were considered to be potential hotspots for bird mercury
contamination. Using this approach, 101 grid cells were identified that
can be considered to be hotspots for avian mercury contamination in
westernNorth America (red grid cells in Fig. 8). These hotspots included
locations in the Aleutian Islands; the North Slope of Alaska; east-central
Alaska; southeastern Alaska; northern Nunavut, Canada; Puget Sound,
Washington; Great Basin (especially northern Idaho, and western and
northern Nevada); San Francisco Bay and Central Valley, California;
southern Arizona; the Gulf Coast of Texas; and the Hawaiian Islands
(Fig. 8).

Among the grid cell hotspots identified from the combination of the
raw and literature-review datasets, many were characterized by low
sample sizes (b15 samples; n=1grid cell), high coefficients of variation
(N25%; n=7 grid cells), or both (n=71 grid cells). Thus, additional
sampling in these locationswould help to determine if they are hotspots
for bird mercury contamination. On the other hand, 22 of the identified
hotspots were well sampled (N15 samples) and had relatively low
coefficients of variation (b25%). These identified hotspots (red grid
rica using raw data (n=27,629 individual samples). Each grid cell is 100 km× 100 km. (A)
lative to the entire dataset, such that 20% of all grid cells are represented by each color. LS
s and year as randomeffects. (B) Displays the sample size in each grid cell. (C) Displays the
each grid cell. The threemaps can be used in combination to evaluate the confidence in the
s indicate (B) smaller sample sizes and (C) greater coefficients of variation which denote



Fig. 4 (continued).
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cells with bolded black borders in Fig. 8) included the North Slope of
Alaska; the western Aleutian Islands; Puget Sound; southwestern
Idaho; western Wyoming; northern Montana; North Dakota and
South Dakota along the Missouri River; central Arizona; the Gulf Coast
of Texas; western Nevada; and San Francisco Bay, California. Similar
hotspots of mercury contamination were observed at some sites for
freshwater fishes, especially in western and northern Nevada and
central Arizona (Eagles-Smith et al., 2016b). Avian mercury hotspots
on theNorth Slope of Alaskamay reflect recent trends in increasedmer-
cury exposure observed in piscivorous birds in the Arctic (Evers et al.,
2014; Rigét et al., 2011), which are thought to be related to atmospheric
deposition (Blum et al., 2013; Sunderland et al., 2009) andwarmer Arc-
tic temperatures associated with climate change potentially releasing
inorganic mercury within snowpack, permafrost, and sea ice, and en-
hancing methylmercury production (AMAP, 2002; Brooks et al., 2006).
In the Aleutian Islands, several studies have demonstrated high THg
concentrations in birds with concentrations sometimes increasing
westward across the island chain (Anthony et al., 2007; Ricca et al.,
2008). InWashington’s Puget Sound, surf scoters exhibited THg concen-
trations similar to those of surf scoters in San Francisco Bay, California
(Henny et al., 1991; Ohlendorf et al., 1987) andmercury concentrations
of both surf scoters andwestern grebes increased as they over-wintered
in Puget Sound (Henny et al., 1991, 1990). The hotspot in the Gulf Coast
of Texas included Lavaca Bay, a designated mercury superfund site.
Finally, San Francisco Bay estuary, California and western Nevada,
have a long history of mercury contamination due to the legacy of



Fig. 5. Bird blood-equivalent total mercury (THg) concentrations in (A) piscivores (n=10,243 individual samples), (B) insectivores (n=8,464 individual samples), and (C) omnivores
(n=6,685 individual samples) across western North America using raw data. Each grid cell is 100 km × 100 km. Maps display grid cells by their percentile of least squares (LS) mean
THg concentration relative to the entire dataset, such that 20% of all grid cells in each foraging guild are represented by each color. LS mean THg concentrations in each foraging guild
were estimated from a model with grid cell as a fixed effect, and species and year as random effects.

Fig. 6. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) concentrations in birds among ecoregions in western North America using data derived from a
literature review (n=1,712means, representing n=19,998 individual samples). LSmean blood-equivalent THg concentrationswere estimated from amodelwith foraging guild, habitat,
and ecoregion as fixed effects, and grid cell, year, and species as randomeffects. Different lowercase letters next to bars denote significant (pb0.05) differences betweenmeans. Literature-
derived bird THg concentrations were available for 15 of the possible 17 ecoregions in western North America.
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mining (Conaway et al., 2008; Singer et al., 2013) and have widespread
mercury contamination of biota (Ackerman et al., 2008, 2007;
Eagles-Smith and Ackerman, 2014; Eagles-Smith et al., 2009a; Henny
et al., 2007, 2002). San Francisco Bay, California; western Nevada; and
other Great Basin areas are of particular concern for methylmercury
exposure to birds inwestern North America, andwould benefit from in-
clusion in continental contaminant monitoring programs (Mason et al.,
2005).

3.4. Literature review ofmercury toxicity to birds and translation of toxicity
benchmarks into a common blood-equivalent tissue

The literature was reviewed, the published toxicity benchmarks
for birds were summarized, and toxicity benchmarks for different tis-
sues were integrated into a common blood-equivalent THg concentra-
tion (Table 1). This approach provides the ability to integrate toxicity
risk across avian tissues and life-stages into a single toxicity benchmark
based on bird blood. Effects occurred across a range of blood-equivalent
THg concentrations, with many documented effects in the range of 1.0
to 3.0 μg/g ww and more severe effects occurring over 3.0 μg/g ww
(Table 1). The lowest documented effects in birds occurred at a blood-
equivalent THg concentration of 0.2 μg/g ww (Table 1). In general,
health, physiology, behavior, and reproduction tended to be affected
by methylmercury at lower blood-equivalent THg concentrations
(1.0 μg/g ww), substantial impairment to health and reproduction oc-
curred at moderate blood-equivalent THg concentrations (2.0 μg/g ww),
more severe impairment to health and reproduction occurred at
higher blood-equivalent THg concentrations (3.0 μg/g ww), and often
complete reproductive failure occurred at extremely high blood-
Fig. 7. Blood-equivalent total mercury (THg) concentrations in birds across western North A
n=19,998 individual samples). Each grid cell is 100 km × 100 km. (A) The map displays grid c
dataset, such that 20% of all grid cells are represented by each color. LS mean THg concentration
dom effects. (B) Displays the effective sample size in each grid cell. (C) Displays the coefficient
grid cell. The three maps can be used in combination to evaluate the confidence in the estimat
dicate (B) smaller sample sizes and (C) greater coefficients of variation which denote lower co
equivalent THg concentrations (4.0 μg/g ww; Table 1). THg concentra-
tions in blood over 4.0 μg/g ww in bird blood resulted in a variety of
severe physiological and reproductive effects, including adult mortality
at blood-equivalent THg concentrations over 8.5 μg/g ww (Table 1).

At approximately 1.0 μg/g ww in bird blood, effects of methylmer-
cury exposure included altered bird breeding behaviors (Frederick and
Jayasena, 2010; Tartu et al., 2015a); reduced breeding success of south
polar skuas during the subsequent breeding season (Goutte et al.,
2014); reduced egg hatchability (LC50: lethal concentration where 50%
mortality occurs) of highly-sensitive birds (Heinz et al., 2009b); an esti-
mated 12% reduction in common loon productivity (Burgess andMeyer,
2008); reduced egg hatchability (LC50) in thick-billed murres (Braune
et al., 2012); the onset of demethylation of methymercury in the liver
of Forster’s terns, Caspian terns, American avocets, and black-necked
stilts (Eagles-Smith et al., 2009b); changes to enzymes associated with
glutathione metabolism and antioxidant activity in ruddy ducks
(Hoffman et al., 1998); and impaired behavior of common loons
(Depew et al., 2012). A bird blood-equivalent THg concentration of 1.0
μg/g ww also is very close to the derived toxicity benchmark for im-
paired bird reproduction using egg and liver tissue in the review by
Shore et al. (2011). At approximately 2.0 μg/g ww in bird blood, effects
of methylmercury exposure included impaired reproduction in captive
dosed mallards (Heinz, 1979); reduced egg hatchability (LC50) of
moderately-sensitive birds (Heinz et al., 2009b); reduced breeding suc-
cess of brown skuas during the subsequent breeding season (Goutte
et al., 2014); an estimated 23% reduction in common loon productivity
(Burgess and Meyer, 2008); reduced egg hatchability (LC50) in Arctic
terns (Braune et al., 2012); and impaired productivity of common
loons (Depew et al., 2012). At approximately 3.0 μg/g ww in bird
merica based on data derived from a literature review (n=1,712 means, representing
ells by their percentile of least squares (LS) mean THg concentration relative to the entire
s were estimated from amodel with grid cell as a fixed effect, and species and year as ran-
of variation (as a percentage) for themodel-estimated LS mean THg concentration in each
ed blood-equivalent THg concentration in individual grid cells. The darker graduations in-
nfidence in the model-estimated LS mean THg concentrations in those grid cells.



Fig. 7 (continued).
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blood, effects ofmethylmercury exposure included impaired productiv-
ity (Barr, 1986), reproductive failure (Depew et al., 2012; Evers et al.,
2008), and a 35% reduction in the productivity of common loons
(Burgess and Meyer, 2008); decreased immune competence in tree
swallows (Hawley et al., 2009); and decreased egg hatchability in
ring-necked pheasants (Fimreite, 1971). Finally, at approximately 4.0
μg/g ww in bird blood, effects of methylmercury exposure became
widespread among most bird species and included reduced egg hatch-
ability (LC50) of birds that are less-sensitive to methylmercury toxicity
(Heinz et al., 2009b); reduced egg hatchability (LC50) in common
loons (Kenow et al., 2011); increased incidence of same-sex pairs
(Frederick and Jayasena, 2010); and an estimated 50% reduction in
common loon productivity (Burgess and Meyer, 2008).
Because sensitivity to methylmercury toxicity can differ widely
among species (Heinz et al., 2009b), it is difficult to select a single toxic-
ity benchmark that can be applied across species, such as for the 273
species included in this paper (Table S1). However, some general prin-
ciples can be derived from the synthesis of published toxicity studies
that can be used to guide the interpretation of birdmethylmercury con-
centrations (Table 1). In general, birds with blood THg concentrations
b0.2 μg/g ww are below any known effect levels and can be considered
to have background levels ofmethylmercury exposure. Birdswith blood
THg concentrations between 0.2-1.0 μg/gww can be considered to have
lower risk, 1.0-3.0 μg/g ww have moderate risk, 3.0-4.0 μg/g ww have
higher risk, and N4.0 μg/g ww have severe risk tomethylmercury toxic-
ity. Overall, 66% of individual birds exceeded a blood-equivalent THg



Fig. 8. Blood-equivalent total mercury (THg) concentrations in birds across western North America using raw data (grid cells not hatched: n=27,629 individual samples) and mean data
derived from a literature review (hatched grid cells: n=1,712means, representing n=19,998 individual samples). Each grid cell is 100 km× 100 km. Themap displays grid cells by their
percentile of least squares (LS) mean THg concentration relative to the entire dataset, such that 20% of grid cells are represented by each color for each dataset. However, when grid cells
had an estimated THg concentration using both the raw and literature-reviewdatasets, priority was given to the raw data and the literature-derived estimate for that grid cell was exclud-
ed. LS mean THg concentrations were estimated separately for each dataset from models with grid cell as a fixed effect, and species and year as random effects. Red grid cells that are
outlined in black indicate hotspots that were well sampled (N15 samples) and had relatively low coefficients of variation (b25%).
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concentration of 0.2 μg/g ww (above background levels), 28% exceeded
1.0 μg/g ww (moderate risk and above), 8% exceeded 3.0 μg/gww (high
risk and above), and 4% exceeded 4.0 μg/g ww (severe risk; Table S9).
Because numerous effects to health and reproduction occur in many
bird species at blood THg concentrations near 3.0 μg/g ww (Table 1),
that is a useful methylmercury toxicity benchmark for the potential
for more severe impairment to bird health and reproduction. Species
with N5% of individuals exceeding THg concentrations of 3.0 μg/g ww
in blood included horned grebe (100%), black-footed albatross (44%),
Forster’s tern (33%), pigeon guillemot (30%), willet (25%), northern
fulmar (23%), northern shoveler (19%), black skimmer (13%), Clark’s
grebe (11%), clapper rail (11%), American white pelican (11%), Caspian
tern (10%), peregrine falcon (9%), least tern (9%), common loon (8%),
double-crested cormorant (8%), black-necked stilt (8%), Wilson's phala-
rope (8%), snowy plover (7%), and ruddy turnstone (7%; Table S9). Song-
birds, in particular, may be more sensitive to methylmercury toxicity
(Heinz et al., 2009b), and substantial impairment may occur at blood
THg concentrations of only 1.0 μg/g ww (Table 1). The percentage of
individual songbirds exceeding 1.0 μg/g ww included western kingbird
(40%), bank swallow (20%), American robin (10%), yellow-breasted chat
(7%), ash-throated flycatcher (4%), willow flycatcher (4%), tree swallow
(3%), house wren (2%), rusty blackbird (2%), white-crowned sparrow
(2%), and barn swallow (1%; Table S9). Table S9 can be used to examine
additional species at a range of blood-equivalent THg concentrations
from 0.2 to 4.0 μg/g ww. Fig. 9 shows the proportion of individual birds
exceeding various toxicity benchmarks only for those species with ≥60
samples. Often, there can be as much variability in THg concentrations
among individuals of the same species as among species due to the sub-
stantially large influences of local site and habitat-specific effects on
methylmercury production and bioaccumulation (Eagles-Smith et al.,
2009a); therefore comparisons among species (Figs. S2-S14) should be
viewed as approximations of relative methylmercury exposure at this
large scale of study.

4. Suggestions for mercury monitoring programs

To compile mercury contamination data in birds throughout
western North America, many different datasets derived from seven
different tissues (egg, albumen, whole blood, muscle, liver, kidney,
and feathers) were used. It was necessary to make several assumptions
and to use general equations to translate these seven tissues into a com-
mon matrix— blood-equivalent THg concentrations— for comparisons
among studies and species. These generalities introduced uncertainty
into the resulting estimates of blood-equivalent THg concentrations, es-
pecially for tissues like adult feathers. These results suggest that future
mercury monitoring efforts would benefit from sampling tissues that
are most-easily translated into a tissue that has a well-developed
toxicity benchmark and that is directly relevant to bird reproduction
(Table 2). These high-priority sampling tissues include adult blood,
eggs, and chick down feathers (in contrast to low-priority adult
feathers). Bird THg concentrations in whole blood are highly correlated
to THg and methylmercury concentrations in internal tissues that
require more invasive sampling procedures (Eagles-Smith et al.,
2008). Additionally, the THg concentration in a female’s blood is highly
correlated to THg concentrations in her eggs (Ackerman et al., 2016a),
providing THg concentrations in blood with a strong link to the numer-
ous toxicity benchmarks that have been developed for egg hatchability.
Eggs are a high-priority sampling tissue because they are relatively easy
to sample, and relate directly to many toxicity benchmarks, including
impaired reproduction. Egg THg concentrations need to be reported



Fig. 9. Percentage of individual birds sampled in western North America that are at risk to methylmercury contamination based on blood-equivalent total mercury concentrations using
rawdata. Only specieswith ≥60 samples are included; see Table S9 for all species. Risk categories are:b0.2 μg/gww(blue; below any knowneffect levels), 0.2 to b1.0 μg/gww(yellow; low
risk), 1.0 to b3.0 μg/g ww (orange; moderate risk), 3.0 to b4.0 μg/g ww (red; high risk), and ≥4.0 μg/g ww (dark red; severe risk). Brackets on the right indicate groups of species where
some individuals have blood-equivalent total mercury concentrations over the specified toxicity benchmark.

766 J.T. Ackerman et al. / Science of the Total Environment 568 (2016) 749–769
on a fresh wet weight basis (Ackerman et al., 2013; Stickel et al., 1973),
and therefore it is necessary to collect additional egg morphometric
data (such as egg length, width, and weight) for proper adjustments
to the measured egg THg concentrations. Chick down feathers also can
be a useful tissue, because THg concentrations in down feathers
represent in ovo exposure and can be translated into equivalent THg
concentrations in whole eggs (Ackerman and Eagles-Smith, 2009).
Besides chick down feathers, sampling juvenile birds for contaminant
monitoring purposes is not advised, because THg concentrations in
internal tissues (including blood) change rapidly as chicks age due to
mass dilution and mercury transfer into growing feathers (Ackerman
et al., 2011; Kenow et al., 2007) and, therefore, are difficult to interpret.

Tissues which have a moderate-priority for assessing bird contami-
nation include egg albumen, that can be non-lethally sampled
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and translated into whole-egg THg concentrations (Ackerman and
Eagles-Smith, 2009; Stebbins et al., 2009); and muscle, liver, kidney,
and brain, which are highly correlated to other internal tissues, includ-
ing whole blood (Eagles-Smith et al., 2008; Scheuhammer et al.,
2008), but require more invasive sampling procedures. Additionally,
unlike in blood, eggs, muscle, and feathers, most of the THg in the
liver and kidney often is not in themethylmercury form due to the abil-
ity of birds to demethylatemethylmercurywithin the liver, especially at
high THg concentrations (Eagles-Smith et al., 2009b; Henny et al., 2002;
Scheuhammer et al., 2008). Therefore, chemical determination ofmeth-
ylmercury, in addition to THg, may be necessary when using liver and
kidney tissues. Finally, although many mercury monitoring programs
use them, feathers have low-priority as a preferred tissue for sampling.
Feather THg concentrations are highly variablewithin an individual bird
(BondandDiamond, 2008; Braune andGaskin, 1987; Cristol et al., 2012;
Furness et al., 1986), and are relatively poorly correlated with THg
concentrations in internal tissues (Eagles-Smith et al., 2008; Evers
et al., 1998) that are more likely to indicate risk of current methylmer-
cury toxicity. Furthermore, THg concentrations in feathers represent
THg concentrations in blood at the time of feather growth, which is a
combination of the bird’s body burden of mercury, via redistribution
of mercury among internal tissues during molt, and recent mercury
acquired through diet (Braune and Gaskin, 1987; Furness et al., 1986;
Thompson et al., 1998). Not only is the timing of feather molt often
unknown, but molt may represent a time when internal mercury
concentrations are rapidly changing due tomercury transfer to feathers
(Ackerman et al., 2011; Condon and Cristol, 2009) and the often-
associated nutritional stress. There are certainly exceptions where
adult feathers may be useful for mercury monitoring, including (1) for
non-migratory bird species with extremely small home ranges (or
other ecology)whichmake THg concentrations in feathers highly corre-
lated to those in internal tissues (Ackerman et al., 2012), (2)whenmore
invasive sampling methods need to be avoided (such as endangered
species), or (3) when using museum specimens to examine long-term
temporal trends, because no other tissue is available (Bond et al.,
2015; Monteiro and Furness, 1997).

In addition to selecting the most useful bird tissues, reasonable
efforts to ensure adequate sample sizes are acquired are important for
properly characterizing methylmercury risk to birds. Few studies have
been published on this topic, but Ackerman et al. (2016b) demonstrated
that to estimate a population’s mean THg concentration using eggs
would typically require N60 samples to be within 10% of the popula-
tion’s actual mean THg concentration. Similar sample sizes would be
necessary for other bird populations when variance in THg concentra-
tions is comparable to any of the three species in that study. Sampling
fewer individuals will result in an estimate that has lower accuracy,
but sampling 15-30 individuals will normally provide an estimate with-
in 20% of the population’s actual mean THg concentration (Ackerman
et al., 2016b).
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Figure S1.  Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  Orders 
in this figure include Falconiformes, Accipitriformes, and Strigiformes. 
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Figure S2. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  Orders 
in this figure include Podicipediformes, Procellariiformes, and Suliformes. 
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Figure S3. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  Orders 
in this figure include Gruiformes, Gaviiformes, and Pelecaniformes. 
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Figure S4. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  The 
order in this figure is Anseriformes. 
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Figure S5. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  The 
order in this figure is Charadriiformes. 
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Figure S6. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  The 
order in this figure is Passeriformes. 
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Figure S7. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using raw data.  LS mean blood-equivalent THg 
concentrations were estimated from a model with species as a fixed effect, and grid and year as 
random effects.  Species are organized by order, and then sorted by THg concentrations.  Orders 
in this figure include Piciformes, Galliformes, and Columbiformes. 
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Figure S8. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects. Species are organized by order, and then sorted 
by THg concentrations.  Orders in this figure include Falconiformes, Accipitriformes, and 
Strigiformes. 
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Figure S9. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects.  Species are organized by order, and then 
sorted by THg concentrations.  Orders in this figure include Podicipediformes, Procellariiformes, 
Suliformes, and Phaethontiformes. 
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Figure S10. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects.  Species are organized by order, and then 
sorted by THg concentrations.  Orders in this figure include Gruiformes, Gaviformes, and 
Pelecaniformes. 
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Figure S11. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects.  Species are organized by order, and then sorted 
by THg concentrations.  The order in this figure is Anseriformes. 
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Figure S12. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects.  Species are organized by order, and then 
sorted by THg concentrations. The order in this figure is Charadriiformes. 
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Figure S13. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects.  Species are organized by order, and then sorted 
by THg concentrations.  The order in this figure is Passeriformes. 
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Figure S14. Least squares (LS) mean ± standard error blood-equivalent total mercury (THg) 
concentrations in western North American birds using data derived from the literature review.  
LS mean blood-equivalent THg concentrations were estimated from a model with species as a 
fixed effect, and grid and year as random effects. Species are organized by order, and then sorted 
by THg concentrations.  Orders in this figure include Galliformes and Columbiformes. 
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Table S1.  Summary of 273 bird species studied for mercury contamination in western North 
America, and their primary foraging guilds and habitats during the breeding season. 

Order Family Common name Species Foraging guild Habitat 

Accipitriformes    

Accipitridae    

Bald Eagle Haliaeetus leucocephalus Piscivore Fresh and brackish water 

Cooper's Hawk Accipiter cooperii Carnivore Terrestrial-ground 

Ferruginous Hawk Buteo regalis Carnivore Terrestrial-ground 

Golden Eagle Aquila chrysaetos Carnivore Terrestrial-ground 

Hawaiian Hawk Buteo solitarius Carnivore Terrestrial-ground 

Northern Goshawk Accipiter gentilis Carnivore Terrestrial-ground 

Northern Harrier Circus cyaneus Carnivore Freshwater 

Red-tailed Hawk Buteo jamaicensis Carnivore Terrestrial-ground 

Sharp-shinned Hawk Accipiter striatus Carnivore Terrestrial-ground 

Swainson's Hawk Buteo swainsoni Carnivore Terrestrial-ground 

Cathartidae    

Turkey Vulture Cathartes aura Carnivore Terrestrial-ground 

Pandionidae    

Osprey Pandion haliaetus Piscivore Fresh and brackish water 

Anseriformes    

Anatidae    

American Wigeon Anas americana Omnivore Freshwater 

Barrow's Goldeneye Bucephala islandica Omnivore Freshwater 

Black Scoter Melanitta americana Omnivore Coastal 

Blue-winged Teal Anas discors Omnivore Freshwater 

Brant Branta bernicla Herbivore Coastal 

Bufflehead Bucephala albeola Insectivore Freshwater 

Cackling Goose Branta hutchinsii Herbivore Fresh and brackish water 

Canada Goose Branta canadensis Herbivore Freshwater 

Canvasback Aythya valisineria Omnivore Freshwater 

Cinnamon Teal Anas cyanoptera Omnivore Freshwater 

Common Eider Somateria mollissima Molluscovore Coastal 

Common Goldeneye Bucephala clangula Omnivore Freshwater 

Common Merganser Mergus merganser Piscivore Freshwater 

Emperor Goose Chen canagica Herbivore Coastal 

Gadwall Anas strepera Omnivore Freshwater 

Greater Scaup Aythya marila Omnivore Freshwater 
Greater White-fronted 
Goose 

Anser albifrons Herbivore Coastal 

Green-winged Teal Anas crecca Omnivore Freshwater 

Harlequin Duck Histrionicus histrionicus Insectivore Freshwater 

Hooded Merganser Lophodytes cucullatus Piscivore Freshwater 

King Eider Somateria spectabilis Molluscovore Coastal 

Lesser Scaup Aythya affinis Crustaceovore Freshwater 

Long-tailed Duck Clangula hyemalis Omnivore Coastal 

Mallard Anas platyrhynchos Omnivore Freshwater 

Northern Pintail Anas acuta Omnivore Freshwater 

Northern Shoveler Anas clypeata Omnivore Freshwater 
Red-breasted 
Merganser 

Mergus serrator Piscivore Freshwater 
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Order Family Common name Species Foraging guild Habitat 

Redhead Aythya americana Herbivore Freshwater 

Ring-necked Duck Aythya collaris Omnivore Freshwater 

Ruddy Duck Oxyura jamaicensis Omnivore Freshwater 

Snow Goose Chen caerulescens Herbivore Coastal 

Spectacled Eider Somateria fischeri Molluscovore Coastal 

Steller's Eider Polysticta stelleri Molluscovore Coastal 

Surf Scoter Melanitta perspicillata Molluscovore Freshwater 

Trumpeter Swan Cygnus buccinator Herbivore Freshwater 

Tundra Swan Cygnus columbianus Herbivore Coastal 

White-winged Scoter Melanitta fusca Molluscovore Freshwater 

Wood Duck Aix sponsa Omnivore Freshwater 

Charadriiformes    

Alcidae    
Ancient Murrelet Synthliboramphus 

antiquus 
Crustaceovore Coastal 

Black Guillemot Cepphus grylle Crustaceovore Coastal 

Cassin's Auklet Ptychoramphus aleuticus Crustaceovore Coastal 

Common Murre Uria aalge Piscivore Coastal 

Crested Auklet Aethia cristatella Crustaceovore Coastal 

Horned Puffin Fratercula corniculata Piscivore Coastal 
Kittlitz's Murrelet Brachyramphus 

brevirostris 
Crustaceovore Coastal 

Marbled Murrelet Brachyramphus 
marmoratus 

Piscivore Coastal 

Parakeet Auklet Aethia psittacula Crustaceovore Coastal 

Pigeon Guillemot Cepphus columba Piscivore Coastal 

Rhinoceros Auklet Cerorhinca monocerata Crustaceovore Coastal 

Thick-billed Murre Uria lomvia Piscivore Coastal 

Tufted Puffin Fratercula cirrhata Piscivore Coastal 

Whiskered Auklet Aethia pygmaea Crustaceovore Coastal 

Charadriidae    
American Golden-
plover 

Pluvialis dominica Insectivore Coastal 

Black-bellied Plover Pluvialis squatarola Crustaceovore Coastal 

Killdeer Charadrius vociferus Insectivore Fresh and brackish water 

Mountain Plover Charadrius montanus Insectivore Terrestrial-ground 

Piping Plover Charadrius melodus Insectivore Fresh and brackish water 

Semipalmated Plover Charadrius semipalmatus Molluscovore Coastal 

Snowy Plover Charadrius nivosus Crustaceovore Fresh and brackish water 

Haematopodidae    
American 
Oystercatcher 

Haematopus palliatus Molluscovore Coastal 

Black Oystercatcher Haematopus bachmani Molluscovore Coastal 

Laridae    

Arctic Tern Sterna paradisaea Piscivore Fresh and brackish water 

Black Skimmer Rynchops niger Piscivore Coastal 

Black Tern Chlidonias niger Insectivore Freshwater 
Black-legged 
Kittiwake 

Rissa tridactyla Piscivore Coastal 
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Order Family Common name Species Foraging guild Habitat 

Brown Noddy Anous stolidus Piscivore Coastal 

California Gull Larus californicus Insectivore Fresh and brackish water 

Caspian Tern Hydroprogne caspia Piscivore Fresh and brackish water 

Common Tern Sterna hirundo Piscivore Coastal 

Elegant Tern Thalasseus elegans Piscivore Coastal 

Forster's Tern Sterna forsteri Piscivore Fresh and brackish water 

Franklin's Gull Leucophaeus pipixcan Insectivore Freshwater 

Glaucous Gull Larus hyperboreus Piscivore Coastal 

Glaucous-winged Gull Larus glaucescens Piscivore Coastal 

Gray-backed Tern Onychoprion lunatus Piscivore Coastal 

Gull-billed Tern Gelochelidon nilotica Insectivore Coastal 

Herring Gull Larus argentatus Piscivore Coastal 

Ivory Gull Pagophila eburnea Carnivore Coastal 

Laughing Gull Leucophaeus atricilla Crustaceovore Coastal 

Least Tern Sternula antillarum Piscivore Fresh and brackish water 

Little Tern Sternula albifrons Piscivore Fresh and brackish water 

Mew Gull Larus canus Insectivore Fresh and brackish water 

Ring-billed Gull Larus delawarensis Piscivore Freshwater 

Royal Tern Thalasseus maximus Piscivore Coastal 

Sooty Tern Onychoprion fuscatus Piscivore Coastal 

Western Gull Larus occidentalis Piscivore Coastal 

White Tern Gygis alba Piscivore Coastal 

Recurvirostridae    

American Avocet Recurvirostra americana Omnivore Fresh and brackish water 

Black-necked Stilt Himantopus mexicanus Insectivore Freshwater 

Scolopacidae    

Baird's Sandpiper Calidris bairdii Insectivore Coastal 

Bar-tailed Godwit Limosa lapponica Insectivore Coastal 

Black Turnstone Arenaria melanocephala Molluscovore Coastal 

Common Snipe Gallinago gallinago Vermivore Freshwater 

Dunlin Calidris alpina Insectivore Coastal 

Hudsonian Godwit Limosa haemastica Insectivore Coastal 

Lesser Yellowlegs Tringa flavipes Insectivore Freshwater 

Long-billed Curlew Numenius americanus Omnivore Freshwater 
Long-billed 
Dowitcher 

Limnodromus 
scolopaceus 

Insectivore Coastal 

Marbled Godwit Limosa fedoa Insectivore Freshwater 

Pectoral Sandpiper Calidris melanotos Insectivore Coastal 

Red Phalarope Phalaropus fulicarius Insectivore Coastal 

Red-necked Phalarope Phalaropus lobatus Insectivore Freshwater 

Rock Sandpiper Calidris ptilocnemis Insectivore Coastal 

Ruddy Turnstone Arenaria interpres Omnivore Coastal 
Semipalmated 
Sandpiper 

Calidris pusilla Insectivore Coastal 

Short-billed 
Dowitcher 

Limnodromus griseus Insectivore Coastal 

Spotted Sandpiper Actitis macularius Insectivore Freshwater 

Western Sandpiper Calidris mauri Insectivore Coastal 

Whimbrel Numenius phaeopus Omnivore Fresh and brackish water 
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Order Family Common name Species Foraging guild Habitat 

Willet Tringa semipalmata Insectivore Freshwater 

Wilson's Phalarope Phalaropus tricolor Insectivore Freshwater 

Columbiformes    

Columbidae    

Mourning Dove Zenaida macroura Granivore Terrestrial-ground 

Rock Pigeon Columba livia Omnivore Terrestrial-ground 

Falconiformes    

Falconidae    

American Kestrel Falco sparverius Insectivore Terrestrial-ground 

Aplomado Falcon Falco femoralis Carnivore Terrestrial-ground 

Merlin Falco columbarius Carnivore Terrestrial-ground 

Peregrine Falcon Falco peregrinus Carnivore Terrestrial-ground 

Prairie Falcon Falco mexicanus Carnivore Terrestrial-ground 

Galliformes    

Odontophoridae    

Northern Bobwhite Colinus virginianus Omnivore Terrestrial-ground 

Phasianidae    

Ring-necked Pheasant Phasianus colchicus Omnivore Terrestrial-ground 

Rock Ptarmigan Lagopus muta Herbivore Terrestrial-ground 

Wild Turkey Meleagris gallopavo Omnivore Terrestrial-ground 

Willow Ptarmigan Lagopus lagopus Herbivore Terrestrial-ground 

Gaviiformes    

Gaviidae    

Common Loon Gavia immer Piscivore Freshwater 

Pacific Loon Gavia pacifica Piscivore Freshwater 

Red-throated Loon Gavia stellata Piscivore Coastal 

Yellow-billed Loon Gavia adamsii Piscivore Freshwater 

Gruiformes    

Gruidae    

Sandhill Crane Grus canadensis Omnivore Freshwater 

Whooping Crane Grus americana Omnivore Freshwater 

Rallidae    

American Coot Fulica americana Omnivore Freshwater 

Black Rail Laterallus jamaicensis Insectivore Fresh and brackish water 

Clapper Rail Rallus longirostris Crustaceovore Salt Marsh 

Common Gallinule Gallinula galeata Omnivore Freshwater 

Sora Porzana carolina Omnivore Freshwater 

Virginia Rail Rallus limicola Insectivore Freshwater 

Passeriformes    

Alaudidae    

Horned Lark Eremophila alpestris Omnivore Terrestrial-ground 

Cardinalidae    

Blue Grosbeak Passerina caerulea Omnivore Terrestrial-ground 

Lazuli Bunting Passerina amoena Omnivore Terrestrial-lower canopy 

Summer Tanager Piranga rubra Insectivore Terrestrial-upper canopy 

Western Tanager Piranga ludoviciana Omnivore Terrestrial-upper canopy 
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Order Family Common name Species Foraging guild Habitat 

Cinclidae    

American Dipper Cinclus mexicanus Insectivore Freshwater 

Corvidae    

American Crow Corvus brachyrhynchos Omnivore Terrestrial-ground 

Common Raven Corvus corax Omnivore Terrestrial-ground 

Emberizidae    

Abert's Towhee Melozone aberti Omnivore Terrestrial-ground 

Brewer's Sparrow Spizella breweri Insectivore Terrestrial-ground 

Dark-eyed Junco Junco hyemalis Omnivore Terrestrial-ground 

Green-tailed Towhee Pipilo chlorurus Omnivore Terrestrial-ground 

Lincoln's Sparrow Melospiza lincolnii Omnivore Terrestrial-ground 

Nelson's Sparrow Ammodramus nelsoni Insectivore Terrestrial-ground 

Savannah Sparrow 
Passerculus 
sandwichensis 

Omnivore Terrestrial-ground 

Song Sparrow Melospiza melodia Omnivore Freshwater 

Spotted Towhee Pipilo maculatus Omnivore Terrestrial-ground 

Vesper Sparrow Pooecetes gramineus Omnivore Terrestrial-ground 
White-crowned 
Sparrow 

Zonotrichia leucophrys Omnivore Terrestrial-ground 

Fringillidae    

American Goldfinch Spinus tristis Omnivore Terrestrial-lower canopy 

Black Rosy-finch Leucosticte atrata Omnivore Terrestrial-ground 
Gray-crowned Rosy-
finch 

Leucosticte tephrocotis Omnivore Terrestrial-ground 

House Finch Haemorhous mexicanus Granivore Terrestrial-ground 

Lesser Goldfinch Spinus psaltria Granivore Terrestrial-lower canopy 

Pine Siskin Spinus pinus Omnivore Terrestrial-upper canopy 

Hirundinidae    

Bank Swallow Riparia riparia Insectivore Freshwater 

Barn Swallow Hirundo rustica Insectivore Freshwater 

Cliff Swallow Petrochelidon pyrrhonota Insectivore Freshwater 
Northern Rough-
winged Swallow 

Stelgidopteryx serripennis Insectivore Freshwater 

Purple Martin Progne subis Insectivore Freshwater 

Tree Swallow Tachycineta bicolor Insectivore Freshwater 

Violet-green Swallow Tachycineta thalassina Insectivore Freshwater 

Icteridae    

Brewer's Blackbird Euphagus cyanocephalus Omnivore Terrestrial-ground 
Brown-headed 
Cowbird 

Molothrus ater Omnivore Terrestrial-ground 

Great-tailed Grackle Quiscalus mexicanus Omnivore Terrestrial-ground 

Red-winged Blackbird Agelaius phoeniceus Omnivore Freshwater 

Rusty Blackbird Euphagus carolinus Omnivore Freshwater 

Western Meadowlark Sturnella neglecta Insectivore Terrestrial-ground 
Yellow-headed 
Blackbird 

Xanthocephalus 
xanthocephalus 

Omnivore Freshwater 

Loggerhead Shrike Lanius ludovicianus Insectivore Terrestrial-ground 

Mimidae    

Gray Catbird Dumetella carolinensis Omnivore Terrestrial-lower canopy 
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Order Family Common name Species Foraging guild Habitat 

Paridae    
Black-capped 
Chickadee 

Poecile atricapillus Insectivore Terrestrial-lower canopy 

Mountain Chickadee Poecile gambeli Insectivore Terrestrial-lower canopy 

Oak Titmouse Baeolophus inornatus Insectivore Terrestrial-lower canopy 

Parulidae    
Black-throated Gray 
Warbler 

Setophaga nigrescens Insectivore Terrestrial-lower canopy 

Common 
Yellowthroat 

Geothlypis trichas Insectivore Terrestrial-lower canopy 

Macgillivray's 
Warbler 

Geothlypis tolmiei Insectivore Terrestrial-lower canopy 

Northern Waterthrush Parkesia noveboracensis Insectivore Freshwater 
Orange-crowned 
Warbler 

Oreothlypis celata Insectivore Terrestrial-lower canopy 

Wilson's Warbler Cardellina pusilla Insectivore Terrestrial-lower canopy 

Yellow Warbler Setophaga petechia Insectivore Terrestrial-lower canopy 

Yellow-breasted Chat Icteria virens Omnivore Freshwater 
Yellow-rumped 
Warbler 

Setophaga coronata Insectivore Terrestrial-lower canopy 

Passeridae    

House Sparrow Passer domesticus Granivore Terrestrial-ground 

Polioptilidae    

Blue-gray Gnatcatcher Polioptila caerulea  Insectivore Terrestrial-upper canopy 

Regulidae    
Ruby-crowned 
Kinglet 

Regulus calendula Insectivore Terrestrial-lower canopy 

Sittidae    
Red-breasted 
Nuthatch 

Sitta canadensis Insectivore Terrestrial-upper canopy 

Sturnidae    

European Starling Sturnus vulgaris Omnivore Terrestrial-ground 

Troglodytidae    

Bewick's Wren Thryomanes bewickii Insectivore Terrestrial-ground 

Cactus Wren 
Campylorhynchus 
brunneicapillus 

Omnivore Terrestrial-lower canopy 

House Wren Troglodytes aedon Insectivore Terrestrial-lower canopy 

Marsh Wren Cistothorus palustris Insectivore Fresh and brackish water 

Turdidae    

American Robin Turdus migratorius Vermivore Terrestrial-ground 

Gray-cheeked Thrush Catharus minimus Omnivore Terrestrial-ground 

Mountain Bluebird Sialia currucoides Insectivore Terrestrial-ground 

Varied Thrush Ixoreus naevius Insectivore Terrestrial-ground 

Western Bluebird Sialia mexicana Insectivore Terrestrial-ground 

Tyrannidae    
Ash-throated 
Flycatcher 

Myiarchus cinerascens Insectivore Terrestrial-lower canopy 

Black Phoebe Sayornis nigricans Insectivore Freshwater 

Dusky Flycatcher Empidonax oberholseri Insectivore Terrestrial-lower canopy 

Olive-sided Flycatcher Contopus cooperi Insectivore Terrestrial-lower canopy 

      



Table S1. Species names continued. 

SM‐22 

 

Order Family Common name Species Foraging guild Habitat 

Vermilion Flycatcher Pyrocephalus rubinus Insectivore Terrestrial-lower canopy 

Western Kingbird Tyrannus verticalis Insectivore Terrestrial-lower canopy 

Willow Flycatcher Empidonax traillii Insectivore Freshwater 
Yellow-bellied 
Flycatcher 

Empidonax flaviventris Insectivore Terrestrial-lower canopy 

Vireonidae    

Bell's Vireo Vireo bellii Insectivore Terrestrial-lower canopy 

Warbling Vireo Vireo gilvus Insectivore Terrestrial-upper canopy 

Pelecaniformes    

Ardeidae    

American Bittern Botaurus lentiginosus Carnivore Freshwater 
Black-crowned Night-
heron 

Nycticorax nycticorax Piscivore Freshwater 

Cattle Egret Bubulcus ibis Insectivore Freshwater 

Great Blue Heron Ardea herodias Piscivore Freshwater 

Great Egret Ardea alba Piscivore Freshwater 

Least Bittern Ixobrychus exilis Piscivore Freshwater 

Little Blue Heron Egretta caerulea Crustaceovore Freshwater 

Reddish Egret Egretta rufescens Piscivore Coastal 

Snowy Egret Egretta thula Piscivore Freshwater 

Tricolored Heron Egretta tricolor Piscivore Coastal 

Pelecanidae    
American White 
Pelican 

Pelecanus 
erythrorhynchos 

Piscivore Freshwater 

Brown Pelican Pelecanus occidentalis Piscivore Coastal 

Threskiornithidae    

Roseate Spoonbill Platalea ajaja Piscivore Coastal 

White-faced Ibis Plegadis chihi Crustaceovore Fresh and brackish water 

Phaethontiformes    

Phaethontidae    

Red-tailed Tropicbird Phaethon rubricauda Piscivore Ocean 

Piciformes    

Picidae    

Hairy Woodpecker Picoides villosus Insectivore Terrestrial-upper canopy 

Northern Flicker Colaptes auratus Insectivore Terrestrial-ground 

Red-naped Sapsucker Sphyrapicus nuchalis Omnivore Terrestrial-upper canopy 

Podicipediformes    

Podicipedidae    

Clark's Grebe Aechmophorus clarkii Piscivore Freshwater 

Eared Grebe Podiceps nigricollis Insectivore Fresh and brackish water 

Horned Grebe Podiceps auritus Insectivore Freshwater 

Pied-billed Grebe Podilymbus podiceps Insectivore Freshwater 

Red-necked Grebe Podiceps grisegena Piscivore Freshwater 
Western Grebe Aechmophorus 

occidentalis 
Piscivore Freshwater 

Procellariiformes    

Diomedeidae    
Black-footed 
Albatross 

Phoebastria nigripes Piscivore Ocean 

      



Table S1. Species names continued. 

SM‐23 

 

Order Family Common name Species Foraging guild Habitat 

Laysan Albatross Phoebastria immutabilis Piscivore Ocean 

Hydrobatidae    
Fork-tailed Storm-
petrel 

Oceanodroma furcata Piscivore Ocean 

Leach's Storm-petrel Oceanodroma leucorhoa Piscivore Ocean 

Procellariidae    

Bonin Petrel Pterodroma hypoleuca Piscivore Ocean 

Buller's Shearwater Puffinus bulleri Crustaceovore Ocean 

Christmas Shearwater Puffinus nativitatis Piscivore Ocean 
Flesh-footed 
Shearwater 

Puffinus carneipes Piscivore Ocean 

Northern Fulmar Fulmarus glacialis Piscivore Ocean 
Short-tailed 
Shearwater 

Puffinus tenuirostris Crustaceovore Ocean 

Sooty Shearwater Puffinus griseus Carnivore Ocean 
Wedge-tailed 
Shearwater 

Puffinus pacificus Piscivore Ocean 

Strigiformes    

Strigidae    

Burrowing Owl Athene cunicularia Carnivore Terrestrial-ground 
Ferruginous Pygmy-
owl 

Glaucidium brasilianum Carnivore Terrestrial-ground 

Great Horned Owl Bubo virginianus Carnivore Terrestrial-ground 
Northern Saw-whet 
Owl 

Aegolius acadicus Carnivore Terrestrial-ground 

Snowy Owl Bubo scandiacus Carnivore Terrestrial-ground 

Tytonidae    

Barn Owl Tyto alba Carnivore Terrestrial-ground 

Suliformes    

Fregatidae    

Great Frigatebird Fregata minor Piscivore Ocean 

Phalacrocoracidae    

Brandt's Cormorant 
Phalacrocorax 
penicillatus 

Piscivore Coastal 

Double-crested 
Cormorant 

Phalacrocorax auritus Piscivore Fresh and brackish water 

Neotropic Cormorant 
Phalacrocorax 
brasilianus 

Piscivore Coastal 

Pelagic Cormorant Phalacrocorax pelagicus Piscivore Coastal 

Sulidae    

Brown Booby Sula leucogaster Piscivore Coastal 

    Red-footed Booby Sula sula Piscivore Coastal 

 



SM‐24 

 

Table S2.  Total mercury concentrations (µg/g ww) in bird eggs in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=20,335 eggs).  Species are organized 
by order, family, and then alphabetically. 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Accipitriformes 

Accipitridae 

Bald Eagle 219 0.27 0.01 0.28 0.12 0.62 

Cooper's Hawk 6 0.02 0.00 0.02 0.02 0.02 

Golden Eagle 1 0.05 --- 0.05 --- --- 

Hawaiian Hawk 5 0.03 0.00 0.03 0.02 0.03 

Northern Goshawk 3 0.07 0.01 0.06 0.06 0.08 

Northern Harrier 1 0.14 --- 0.14 --- --- 

Pandionidae 

Osprey 232 0.07 0.00 0.07 0.02 0.07 

Anseriformes 

Anatidae 

Blue-winged Teal 46 0.07 0.01 0.08 0.03 0.18 

Canada Goose 159 0.01 0.00 0.01 0.00 0.04 

Cinnamon Teal 56 0.13 0.01 0.13 0.06 0.25 

Common Goldeneye 2 0.18 0.02 0.18 0.17 0.20 

Gadwall 71 0.07 0.01 0.08 0.02 0.28 

Lesser Scaup 28 0.05 0.01 0.05 0.03 0.14 

Mallard 237 0.06 0.00 0.06 0.01 0.26 

Northern Pintail 10 0.09 0.02 0.11 0.03 0.22 

Northern Shoveler 28 0.16 0.03 0.16 0.04 0.60 

Redhead 45 0.08 0.01 0.09 0.02 0.24 

Ruddy Duck 29 0.01 0.00 0.01 0.01 0.06 

Snow Goose 30 0.02 0.00 0.01 0.01 0.06 

Spectacled Eider 21 0.05 0.00 0.05 0.03 0.11 

Trumpeter Swan 2 0.01 0.00 0.01 0.01 0.01 

White-winged Scoter 6 0.06 0.01 0.06 0.05 0.11 

Wood Duck 87 0.07 0.01 0.10 0.00 0.73 

Charadriiformes 

Alcidae 

Cassin's Auklet 22 0.12 0.01 0.12 0.07 0.22 

Common Murre 198 0.09 0.01 0.12 0.02 0.27 

Kittlitz's Murrelet 1 0.01 --- 0.01 --- --- 

Marbled Murrelet 2 0.21 0.05 0.22 0.18 0.26 

Pigeon Guillemot 26 0.95 0.08 0.93 0.50 1.63 

Rhinoceros Auklet 21 0.45 0.04 0.44 0.23 0.90 

         



 

Table S2. Egg THg (µg/g ww) continued. 

SM‐25 

 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Thick-billed Murre 141 0.07 0.01 0.07 0.01 0.27 

Charadriidae 

Killdeer 123 0.08 0.01 0.09 0.02 0.26 

Mountain Plover 75 0.04 0.00 0.03 0.01 0.12 

Piping Plover 178 0.10 0.01 0.09 0.04 0.39 

Snowy Plover 132 0.33 0.02 0.35 0.08 1.53 

Haematopodidae 

American Oystercatcher 20 0.17 0.03 0.20 0.05 0.45 

Laridae 

Black Skimmer 68 0.42 0.05 0.50 0.12 1.83 

Black Tern 5 0.12 0.03 0.12 0.06 0.18 

California Gull 563 0.08 0.00 0.08 0.03 0.23 

Caspian Tern 85 0.75 0.03 0.74 0.40 1.55 

Elegant Tern 5 0.38 0.02 0.39 0.34 0.44 

Forster's Tern 4460 1.06 0.01 1.06 0.45 2.64 

Franklin's Gull 163 0.09 0.00 0.08 0.04 0.20 

Glaucous Gull 61 0.14 0.01 0.15 0.07 0.26 

Glaucous-winged Gull 17 0.12 0.01 0.12 0.08 0.23 

Gull-billed Tern 1 0.41 --- 0.41 --- --- 

Laughing Gull 10 0.13 0.03 0.13 0.05 0.34 

Least Tern 618 0.53 0.02 0.50 0.18 2.08 

Little Tern 7 0.35 0.07 0.36 0.18 0.70 

Mew Gull 2 0.07 0.02 0.07 0.05 0.08 

Ring-billed Gull 63 0.06 0.00 0.06 0.03 0.16 

Royal Tern 10 0.78 0.09 0.85 0.42 1.14 

Sooty Tern 10 0.09 0.02 0.12 0.04 0.18 

Western Gull 6 0.54 0.11 0.57 0.29 0.89 

Recurvirostridae 

American Avocet 3922 0.18 0.00 0.17 0.04 0.83 

Black-necked Stilt 1518 0.37 0.01 0.36 0.09 1.59 

Scolopacidae 

Common Snipe 4 0.05 0.01 0.06 0.04 0.08 

Wilson's Phalarope 5 0.46 0.18 0.46 0.19 1.25 

Columbiformes 

Columbidae 

Mourning Dove 5 0.01 0.01 0.01 0.01 0.01 

        

        

        



 

Table S2. Egg THg (µg/g ww) continued. 

SM‐26 

 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Falconiformes 

Falconidae 

American Kestrel 2 0.02 0.01 0.02 0.01 0.03 

Aplomado Falcon 30 0.16 0.02 0.18 0.04 0.46 

Peregrine Falcon 50 0.45 0.04 0.43 0.21 1.52 

Galliformes 

Phasianidae 

Ring-necked Pheasant 5 0.00 0.00 0.00 0.00 0.01 

Gaviiformes 

Gaviidae 

Common Loon 72 0.34 0.03 0.38 0.09 1.06 

Pacific Loon 2 0.11 0.03 0.11 0.09 0.14 

Red-throated Loon 45 0.20 0.01 0.19 0.11 0.40 

Yellow-billed Loon 11 0.40 0.07 0.31 0.23 1.13 

Gruiformes 

Rallidae 

American Coot 580 0.11 0.01 0.09 0.02 0.94 

Clapper Rail 89 0.52 0.06 0.57 0.03 2.08 

Common Gallinule 1 0.03 --- 0.03 --- --- 

Sora 3 0.09 0.01 0.09 0.08 0.11 

Virginia Rail 3 0.77 0.05 0.74 0.70 0.86 

Passeriformes 

Alaudidae 

Horned Lark 11 0.01 0.00 0.01 0.01 0.03 

Cardinalidae 

Summer Tanager 1 0.05 --- 0.05 --- --- 

Corvidae 

American Crow 1 0.02 --- 0.02 --- --- 

Emberizidae 

Song Sparrow 3 0.09 0.01 0.10 0.08 0.11 

Spotted Towhee 1 0.04 --- 0.04 --- --- 

Fringillidae 

House Finch 1 0.02 --- 0.02 --- --- 

Hirundinidae 

Bank Swallow 4 0.14 0.07 0.13 0.06 0.49 

Barn Swallow 76 0.11 0.01 0.11 0.04 0.37 

Cliff Swallow 325 0.06 0.00 0.07 0.02 0.16 

Purple Martin 57 0.05 0.00 0.04 0.03 0.08 

         



 

Table S2. Egg THg (µg/g ww) continued. 

SM‐27 

 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Tree Swallow 1302 0.12 0.00 0.13 0.03 0.39 

Icteridae 

Brown-headed Cowbird 17 0.05 0.01 0.06 0.00 0.20 

Great-tailed Grackle 27 0.01 0.00 0.01 0.01 0.09 

Red-winged Blackbird 66 0.02 0.00 0.02 0.00 0.09 

Western Meadowlark 2 0.01 0.00 0.01 0.01 0.01 

Yellow-headed Blackbird 150 0.03 0.00 0.03 0.00 0.08 

Laniidae 

Loggerhead Shrike 1 0.02 --- 0.02 --- --- 

Paridae 

Mountain Chickadee 3 0.14 0.02 0.14 0.12 0.18 

Oak Titmouse 1 0.07 --- 0.07 --- --- 

Parulidae 
Black-throated Gray 
Warbler 

1 0.20 --- 0.20 --- --- 

Common Yellowthroat 2 0.08 0.02 0.08 0.06 0.10 

Yellow-breasted Chat 21 0.08 0.02 0.07 0.03 0.79 

Passeridae 

House Sparrow 7 0.01 0.00 0.01 0.00 0.02 

Sturnidae 

European Starling 5 0.02 0.00 0.02 0.01 0.03 

Troglodytidae 

Bewick's Wren 3 0.09 0.03 0.09 0.06 0.15 

House Wren 692 0.10 0.00 0.11 0.03 0.23 

Marsh Wren 312 0.07 0.00 0.07 0.04 0.13 

Turdidae 

Western Bluebird 41 0.06 0.01 0.07 0.02 0.15 

Tyrannidae 

Ash-throated Flycatcher 82 0.10 0.01 0.09 0.02 0.38 

Black Phoebe 2 0.09 0.06 0.10 0.05 0.16 

Vermilion Flycatcher 2 0.36 0.07 0.36 0.30 0.43 

Western Kingbird 5 0.10 0.09 0.03 0.02 1.00 

Willow Flycatcher 45 0.06 0.01 0.06 0.02 0.37 

Vireonidae 

Bell's Vireo 5 0.39 0.02 0.39 0.33 0.44 

Pelecaniformes 

Ardeidae 
Black-crowned Night-
heron 

231 0.14 0.01 0.15 0.04 0.53 

         



 

Table S2. Egg THg (µg/g ww) continued. 

SM‐28 

 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Cattle Egret 1 0.11 --- 0.11 --- --- 

Great Blue Heron 269 0.10 0.00 0.10 0.04 0.31 

Great Egret 4 0.19 0.05 0.16 0.14 0.36 

Least Bittern 3 0.07 0.01 0.08 0.05 0.09 

Little Blue Heron 10 0.10 0.03 0.07 0.05 0.41 

Reddish Egret 30 0.08 0.01 0.08 0.05 0.14 

Snowy Egret 73 0.15 0.02 0.17 0.03 0.71 

Tricolored Heron 119 0.10 0.01 0.11 0.04 0.20 

Pelecanidae 

American White Pelican 74 0.21 0.02 0.23 0.04 0.79 

Brown Pelican 101 0.20 0.01 0.18 0.10 0.48 

Threskiornithidae 

Roseate Spoonbill 9 0.23 0.03 0.23 0.14 0.39 

White-faced Ibis 361 0.06 0.00 0.06 0.03 0.19 

Podicipediformes 

Podicipedidae 

Clark's Grebe 19 0.10 0.01 0.10 0.05 0.19 

Eared Grebe 206 0.08 0.00 0.08 0.03 0.20 

Pied-billed Grebe 44 0.18 0.01 0.18 0.10 0.37 

Red-necked Grebe 16 0.11 0.01 0.11 0.08 0.17 

Western Grebe 224 0.08 0.00 0.07 0.04 0.18 

Procellariiformes 

Diomedeidae 

Black-footed Albatross 16 1.19 0.13 1.18 0.65 2.25 

Laysan Albatross 204 0.31 0.01 0.31 0.16 0.63 

Hydrobatidae 

Fork-tailed Storm-petrel 3 0.63 0.14 0.59 0.46 0.92 

Leach's Storm-petrel 6 0.66 0.09 0.69 0.43 0.90 

Strigiformes 

Strigidae 

Ferruginous Pygmy-owl 5 0.03 0.01 0.02 0.02 0.06 

Tytonidae 

Barn Owl 1 0.01 --- 0.01 --- --- 

Suliformes 

Phalacrocoracidae 

Double-crested Cormorant 249 0.25 0.01 0.26 0.06 0.99 

Sulidae 

    Brown Booby 19 0.14 0.01 0.13 0.08 0.26 



SM‐29 

 

Table S3.  Total mercury concentrations (µg/g ww) in bird blood in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=4,639).  Species are organized by 
order, family, and then alphabetically. 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Accipitriformes 

Accipitridae 
Bald Eagle 107 0.96 0.06 1.00 0.34 2.33 
Golden Eagle 1 0.01 --- 0.01 --- --- 

Anseriformes 
Anatidae 

American Wigeon 1 2.13 --- 2.13 --- --- 
Barrow's Goldeneye 64 0.25 0.01 0.24 0.18 0.44 
Black Scoter 3 0.26 0.08 0.28 0.17 0.41 
Brant 30 0.01 0.00 0.01 0.00 0.02 
Common Merganser 2 0.39 0.42 0.63 0.19 1.08 
Harlequin Duck 238 0.18 0.01 0.21 0.02 0.96 
Lesser Scaup 15 0.09 0.01 0.09 0.05 0.20 
Redhead 1 0.12 --- 0.12 --- --- 
Spectacled Eider 155 0.10 0.00 0.10 0.06 0.19 
Steller's Eider 30 0.08 0.00 0.08 0.05 0.12 
Surf Scoter 16 0.10 0.02 0.13 0.04 0.17 
White-winged Scoter 15 0.11 0.01 0.12 0.07 0.16 

Charadriiformes 
Alcidae 

Kittlitz's Murrelet 17 0.18 0.02 0.18 0.09 0.41 
Marbled Murrelet 39 0.20 0.01 0.21 0.10 0.38 

Charadriidae 
American Golden-plover 46 0.16 0.01 0.17 0.08 0.34 

Laridae 
California Gull 122 0.17 0.01 0.16 0.05 0.64 
Caspian Tern 45 1.72 0.20 1.68 0.51 6.97 
Forster's Tern 108 1.62 0.15 1.67 0.33 7.41 

Recurvirostridae 
American Avocet 102 0.30 0.03 0.28 0.06 1.80 
Black-necked Stilt 103 0.99 0.08 1.00 0.28 3.87 

Scolopacidae 
Baird's Sandpiper 1 0.51 --- 0.51 --- --- 
Bar-tailed Godwit 3 0.34 0.13 0.39 0.19 0.57 
Black Turnstone 21 0.18 0.02 0.15 0.12 0.30 
Dunlin 261 0.18 0.01 0.19 0.06 0.45 
Hudsonian Godwit 3 0.22 0.07 0.17 0.15 0.39 
Long-billed Dowitcher 51 0.57 0.04 0.64 0.18 1.22 
Pectoral Sandpiper 73 0.47 0.03 0.44 0.20 1.06 
Red Phalarope 144 0.28 0.02 0.31 0.06 1.10 
Red-necked Phalarope 122 0.19 0.01 0.19 0.06 0.53 
Rock Sandpiper 26 0.09 0.01 0.07 0.04 0.33 
Ruddy Turnstone 14 0.34 0.08 0.23 0.15 1.92 

         



 

Table S3. Blood THg (µg/g ww) continued. 

SM‐30 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Semipalmated Sandpiper 282 0.22 0.01 0.19 0.06 1.06 
Western Sandpiper 93 0.22 0.01 0.22 0.08 0.50 
Whimbrel 3 0.28 0.16 0.26 0.12 0.74 

Gaviiformes 
Gaviidae 

Common Loon 608 0.91 0.03 0.89 0.26 4.00 
Pacific Loon 63 0.45 0.06 0.44 0.09 2.32 
Red-throated Loon 67 0.47 0.06 0.48 0.05 2.25 
Yellow-billed Loon 165 0.63 0.04 0.60 0.20 2.36 

Gruiformes 
Rallidae 

Clapper Rail 23 0.13 0.02 0.13 0.03 0.31 
Passeriformes 

Cardinalidae 
Blue Grosbeak 1 0.01 --- 0.01 --- --- 
Lazuli Bunting 9 0.01 0.00 0.01 0.00 0.05 
Western Tanager 1 0.08 --- 0.08 --- --- 

Cinclidae 
American Dipper 44 0.09 0.01 0.08 0.02 0.29 

Emberizidae 
Brewer's Sparrow 2 0.12 0.02 0.12 0.11 0.14 
Dark-eyed Junco 6 0.09 0.02 0.10 0.05 0.15 
Green-tailed Towhee 1 0.08 --- 0.08 --- --- 
Lincoln's Sparrow 20 0.06 0.01 0.04 0.01 0.22 
Savannah Sparrow 2 0.06 0.01 0.07 0.06 0.07 
Song Sparrow 15 0.16 0.03 0.16 0.07 0.50 
Spotted Towhee 1 0.04 --- 0.04 --- --- 
Vesper Sparrow 1 0.22 --- 0.22 --- --- 
White-crowned Sparrow 44 0.02 0.01 0.02 0.00 0.36 

Fringillidae 
American Goldfinch 1 0.54 --- 0.54 --- --- 
Black Rosy-finch 9 0.19 0.03 0.18 0.13 0.40 
Gray-crowned Rosy-finch 6 0.17 0.01 0.19 0.13 0.19 
Pine Siskin 14 0.34 0.05 0.29 0.20 0.75 

Hirundinidae 
Bank Swallow 1 0.17 --- 0.17 --- --- 
Cliff Swallow 8 0.10 0.01 0.09 0.07 0.16 
Northern Rough-winged Swallow 2 0.05 0.01 0.05 0.04 0.06 
Tree Swallow 9 0.11 0.01 0.09 0.07 0.18 
Violet-green Swallow 1 0.11 --- 0.11 --- --- 

Icteridae 
Brewer's Blackbird 1 0.19 --- 0.19 --- --- 
Brown-headed Cowbird 1 0.11 --- 0.11 --- --- 
Red-winged Blackbird 13 0.05 0.01 0.03 0.02 0.29 
Rusty Blackbird 187 0.14 0.01 0.15 0.02 0.74 

         



 

Table S3. Blood THg (µg/g ww) continued. 

SM‐31 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Western Meadowlark 1 0.02 --- 0.02 --- --- 
Mimidae 

Gray Catbird 1 0.17 --- 0.17 --- --- 
Paridae 

Black-capped Chickadee 11 0.23 0.04 0.23 0.11 0.45 
Mountain Chickadee 23 0.40 0.05 0.37 0.14 0.98 

Parulidae 
Common Yellowthroat 8 0.12 0.02 0.13 0.06 0.23 
Macgillivray's Warbler 1 0.02 --- 0.02 --- --- 
Northern Waterthrush 26 0.15 0.02 0.14 0.08 0.40 
Orange-crowned Warbler 6 0.19 0.07 0.16 0.09 0.67 
Wilson's Warbler 7 0.21 0.03 0.22 0.13 0.30 
Yellow Warbler 23 0.12 0.02 0.12 0.05 0.31 
Yellow-breasted Chat 9 0.03 0.00 0.03 0.02 0.06 
Yellow-rumped Warbler 2 0.30 0.03 0.30 0.27 0.32 

Polioptilidae 
Blue-gray Gnatcatcher 2 0.08 0.01 0.08 0.07 0.09 

Regulidae 
Ruby-crowned Kinglet 9 0.18 0.05 0.16 0.07 0.49 

Sittidae 
Red-breasted Nuthatch 2 0.45 0.11 0.47 0.37 0.57 

Troglodytidae 
Cactus Wren 2 0.17 0.02 0.17 0.15 0.19 
House Wren 1 0.49 --- 0.49 --- --- 
Marsh Wren 45 0.42 0.03 0.44 0.27 0.76 

Turdidae 
American Robin 5 0.41 0.15 0.34 0.18 1.27 
Gray-cheeked Thrush 21 0.03 0.00 0.03 0.02 0.07 
Mountain Bluebird 11 0.11 0.02 0.09 0.06 0.32 
Varied Thrush 16 0.02 0.01 0.02 0.01 0.17 

Tyrannidae 
Ash-throated Flycatcher 1 0.06 --- 0.06 --- --- 
Dusky Flycatcher 4 0.62 0.11 0.69 0.42 0.84 
Olive-sided Flycatcher 3 0.18 0.04 0.21 0.12 0.24 
Willow Flycatcher 7 0.14 0.01 0.14 0.11 0.17 
Yellow-bellied Flycatcher 2 0.06 0.00 0.06 0.06 0.06 

Vireonidae 
Warbling Vireo 11 0.09 0.01 0.09 0.05 0.20 

Pelecaniformes 
Ardeidae 

Great Blue Heron 1 0.79 --- 0.79 --- --- 
Piciformes 

Picidae 
Hairy Woodpecker 1 0.17 --- 0.17 --- --- 
Northern Flicker 1 1.27 --- 1.27 --- --- 

         



 

Table S3. Blood THg (µg/g ww) continued. 

SM‐32 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Red-naped Sapsucker 3 0.06 0.03 0.06 0.03 0.11 
Podicipediformes 

Podicipedidae 
Clark's Grebe 208 0.96 0.07 0.95 0.19 6.75 
Eared Grebe 46 0.48 0.04 0.49 0.21 1.06 
Horned Grebe 2 4.75 1.89 5.13 3.39 6.88 
Pied-billed Grebe 4 0.56 0.11 0.63 0.36 0.75 
Red-necked Grebe 12 0.48 0.13 0.38 0.15 1.91 
Western Grebe 415 0.61 0.03 0.62 0.14 3.00 

Strigiformes 
Strigidae 

    Northern Saw-whet Owl 3 0.90 0.14 1.03 0.69 1.07 



SM‐33 

 

Table S4.  Total mercury concentrations (µg/g dw) in bird muscle in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=517).  Species are organized by order, 
family, and then alphabetically. 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Anseriformes 

Anatidae 
Green-winged Teal 45 0.63 0.10 0.58 0.13 2.82 
Mallard 19 0.09 0.02 0.05 0.03 0.41 
Northern Shoveler 29 4.15 0.67 4.20 1.18 11.60 
Steller's Eider 2 0.58 0.21 0.62 0.43 0.81 

Charadriiformes 
Laridae 

Caspian Tern 49 2.91 0.27 3.14 0.85 7.61 
Forster's Tern 115 2.99 0.24 2.91 0.73 12.99 

Recurvirostridae 
American Avocet 127 1.00 0.09 0.88 0.25 5.14 
Black-necked Stilt 113 2.61 0.18 2.65 0.87 8.87 

Gruiformes 
Gruidae 

Sandhill Crane 7 0.13 0.00 0.13 0.12 0.13 
Whooping Crane 2 0.22 0.12 0.25 0.14 0.36 

Rallidae 
American Coot 1 0.09 --- 0.09 --- --- 
Clapper Rail 1 1.19 --- 1.19 --- --- 

Pelecaniformes 
Ardeidae 

Great Blue Heron 4 1.61 0.41 1.65 1.02 2.71 
Pelecanidae 

American White Pelican 2 1.30 0.10 1.30 1.21 1.39 
Suliformes 

Phalacrocoracidae 
    Double-crested Cormorant 1 1.30  --- 1.30 --- --- 
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Table S5.  Total mercury concentrations (µg/g dw) in bird livers in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=2,036).  Species are organized by 
order, family, and then alphabetically. 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Accipitriformes 

Accipitridae 

Bald Eagle 16 7.45 1.36 7.85 2.39 18.52 

Red-tailed Hawk 2 0.43 0.02 0.43 0.41 0.45 

Pandionidae 

Osprey 1 12.95 --- 12.95 --- --- 

Anseriformes 

Anatidae 

American Wigeon 1 0.11 --- 0.11 --- --- 

Black Scoter 2 2.84 0.34 2.86 2.55 3.17 

Blue-winged Teal 6 0.72 0.37 1.05 0.18 2.46 

Canvasback 33 2.53 0.30 2.88 0.73 6.10 

Cinnamon Teal 3 0.94 0.36 0.84 0.55 1.80 

Common Eider 50 1.78 0.12 1.70 0.97 4.22 

Common Goldeneye 1 5.91 --- 5.91 --- --- 

Emperor Goose 2 0.81 0.38 0.90 0.54 1.26 

Gadwall 10 0.82 0.18 0.61 0.46 2.72 

Greater Scaup 62 4.68 0.36 4.94 1.92 10.60 

Green-winged Teal 51 1.73 0.24 1.67 0.38 7.74 

Hooded Merganser 1 0.44 --- 0.44 --- --- 

King Eider 54 2.08 0.14 2.18 0.92 4.24 

Lesser Scaup 27 1.70 0.24 1.77 0.49 4.82 

Mallard 64 0.12 0.02 0.10 0.05 0.96 

Northern Pintail 2 0.43 0.06 0.43 0.38 0.49 

Northern Shoveler 48 7.71 1.53 8.88 0.94 49.17 

Red-breasted Merganser 5 8.04 2.47 8.86 4.02 19.77 

Redhead 1 0.38 --- 0.38 --- --- 

Ruddy Duck 6 1.03 0.46 0.81 0.33 4.83 

Snow Goose 34 0.10 0.00 0.10 0.10 0.10 

Spectacled Eider 30 1.25 0.12 1.16 0.62 2.66 

Steller's Eider 10 2.74 0.50 2.68 1.30 6.90 

Surf Scoter 100 1.47 0.10 1.40 0.49 4.35 

White-winged Scoter 50 1.28 0.13 1.20 0.47 4.50 

Wood Duck 26 0.12 0.01 0.10 0.10 0.22 

         

         



 

Table S5. Liver THg (µg/g dw) continued. 
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              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Charadriiformes 

Alcidae 

Common Murre 31 3.00 0.40 3.89 0.80 7.86 

Crested Auklet 1 1.14 --- 1.14 --- --- 

Marbled Murrelet 7 1.44 0.46 1.24 0.54 3.82 

Parakeet Auklet 1 2.00 --- 2.00 --- --- 

Pigeon Guillemot 1 6.36 --- 6.36 --- --- 

Tufted Puffin 13 2.94 0.18 2.76 2.19 4.30 

Whiskered Auklet 1 1.40 --- 1.40 --- --- 

Charadriidae 

Black-bellied Plover 13 0.81 0.11 0.78 0.41 1.53 

Killdeer 9 0.51 0.05 0.49 0.36 0.76 

Mountain Plover 25 0.16 0.02 0.12 0.10 0.59 

Haematopodidae 

American Oystercatcher 20 2.49 0.42 2.71 0.97 7.52 

Laridae 

Black Skimmer 1 6.13 --- 6.13 --- --- 

Black-legged Kittiwake 1 3.34 --- 3.34 --- --- 

California Gull 4 0.64 0.30 0.67 0.25 1.80 

Caspian Tern 56 7.82 0.77 9.12 2.29 19.15 

Elegant Tern 1 6.10 --- 6.10 --- --- 

Forster's Tern 114 9.10 0.77 9.60 2.15 35.74 

Franklin's Gull 1 1.61 --- 1.61 --- --- 

Glaucous-winged Gull 13 2.22 0.50 1.80 0.96 7.14 

Least Tern 1 2.43 --- 2.43 --- --- 

Recurvirostridae 

American Avocet 176 2.11 0.18 1.88 0.42 16.56 

Black-necked Stilt 118 7.19 0.62 7.30 2.08 35.46 

Scolopacidae 

Long-billed Curlew 2 0.03 0.00 0.03 0.03 0.03 

Long-billed Dowitcher 53 1.60 0.14 1.45 0.68 4.63 

Spotted Sandpiper 5 0.77 0.31 0.57 0.39 2.91 

Western Sandpiper 8 3.74 0.50 4.50 2.05 5.06 

Willet 61 5.65 1.06 3.90 0.98 57.35 

Wilson's Phalarope 7 3.54 1.04 3.40 1.52 11.97 

Columbiformes 

Columbidae 

Mourning Dove 13 0.06 0.01 0.07 0.02 0.14 

         



 

Table S5. Liver THg (µg/g dw) continued. 
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              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Falconiformes 

Falconidae 

Peregrine Falcon 1 0.31 --- 0.31 --- --- 

Galliformes 

Odontophoridae 

Northern Bobwhite 1 0.10 --- 0.10 --- --- 

Phasianidae 

Ring-necked Pheasant 5 0.02 0.01 0.04 0.01 0.05 

Rock Ptarmigan 12 0.18 0.03 0.18 0.08 0.48 

Wild Turkey 2 0.10 0.00 0.10 0.10 0.10 

Gaviiformes 

Gaviidae 

Common Loon 2 76.94 51.88 95.10 44.79 145.41 

Gruiformes 

Gruidae 

Sandhill Crane 25 0.07 0.01 0.10 0.01 0.13 

Whooping Crane 3 1.80 1.40 2.83 0.64 4.96 

Rallidae 

American Coot 138 0.86 0.07 0.86 0.17 4.03 

Clapper Rail 9 11.65 4.66 15.00 2.38 46.60 

Passeriformes 

Cinclidae 

American Dipper 2 0.24 0.01 0.24 0.23 0.25 

Emberizidae 

Abert's Towhee 5 0.22 0.06 0.21 0.11 0.51 

Lincoln's Sparrow 1 0.42 --- 0.42 --- --- 

Savannah Sparrow 3 0.30 0.08 0.35 0.19 0.42 

Song Sparrow 2 0.15 0.06 0.16 0.11 0.22 

White-crowned Sparrow 4 0.11 0.04 0.09 0.06 0.30 

Hirundinidae 

Barn Swallow 1 0.24 --- 0.24 --- --- 

Cliff Swallow 13 0.31 0.04 0.29 0.18 0.68 

Northern Rough-winged Swallow 2 0.32 0.04 0.32 0.29 0.36 

Tree Swallow 3 0.19 0.03 0.17 0.16 0.26 

Icteridae 

Red-winged Blackbird 11 0.59 0.24 0.56 0.08 3.07 

Western Meadowlark 5 0.15 0.04 0.12 0.09 0.35 

Yellow-headed Blackbird 1 0.07 --- 0.07 --- --- 

         



 

Table S5. Liver THg (µg/g dw) continued. 

SM‐37 

 

              5th  95th 

Order Family Common name n Mean SE Median percentile percentile 

Paridae 

Black-capped Chickadee 20 0.05 0.01 0.04 0.02 0.12 

Troglodytidae 

House Wren 5 0.13 0.01 0.12 0.11 0.16 

Turdidae 

American Robin 4 0.22 0.15 0.13 0.10 1.38 

Western Bluebird 2 0.76 0.04 0.76 0.73 0.79 

Pelecaniformes 

Ardeidae 

Black-crowned Night-heron 6 8.93 2.38 7.36 5.10 24.15 

Great Blue Heron 5 7.69 3.29 6.40 2.92 24.63 

Pelecanidae 

American White Pelican 24 21.27 5.33 17.95 4.31 141.47 

Brown Pelican 25 1.09 0.35 0.94 0.16 20.95 

Podicipediformes 

Podicipedidae 

Eared Grebe 163 5.78 0.40 6.77 0.82 17.06 

Procellariiformes 

Procellariidae 

Northern Fulmar 13 14.10 2.34 15.50 5.76 32.04 

Strigiformes 

Strigidae 

Great Horned Owl 2 1.32 0.36 1.37 1.04 1.69 

Suliformes 

Phalacrocoracidae 

Double-crested Cormorant 60 12.43 1.42 9.49 4.30 68.18 

    Pelagic Cormorant 1 15.30  --- 15.30 --- --- 
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Table S6.  Total mercury concentrations (µg/g dw) in bird kidneys in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=770).  Species are organized by order, 
family, and then alphabetically. 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Accipitriformes 

Accipitridae 
Bald Eagle 16 24.30 4.29 22.23 7.72 71.95 
Red-tailed Hawk 2 0.56 0.00 0.56 0.56 0.57 

Anseriformes 
Anatidae 

Black Scoter 2 1.30 0.10 1.30 1.21 1.39 
Canvasback 3 2.43 0.29 2.68 1.99 2.78 
Common Eider 50 0.90 0.06 0.83 0.49 2.43 
Emperor Goose 2 0.40 0.39 0.61 0.20 1.02 
Gadwall 1 0.08 --- 0.08 --- --- 
Greater Scaup 2 1.29 0.26 1.32 1.08 1.55 
King Eider 54 1.16 0.08 1.31 0.54 2.12 
Lesser Scaup 1 0.49 --- 0.49 --- --- 
Mallard 2 0.16 0.24 0.38 0.07 0.69 
Northern Pintail 1 0.26 --- 0.26 --- --- 
Northern Shoveler 4 1.46 0.75 1.86 0.51 3.91 
Ruddy Duck 3 0.94 0.60 0.64 0.42 3.03 
Spectacled Eider 30 0.64 0.07 0.71 0.18 1.18 
Steller's Eider 7 1.23 0.29 1.15 0.54 2.49 
Surf Scoter 87 0.86 0.07 0.88 0.21 2.58 
White-winged Scoter 47 0.77 0.06 0.71 0.32 1.67 

Charadriiformes 
Alcidae 

Common Murre 10 1.35 0.22 1.26 0.70 2.85 
Marbled Murrelet 9 1.28 0.39 1.02 0.54 5.61 

Charadriidae 
Killdeer 4 0.52 0.12 0.63 0.32 0.69 

Laridae 
Caspian Tern 50 8.89 0.88 9.67 2.60 25.27 
Forster's Tern 99 11.02 0.90 11.25 3.26 40.67 

Recurvirostridae 
American Avocet 127 2.65 0.23 2.33 0.65 14.14 
Black-necked Stilt 115 6.69 0.51 6.78 2.11 23.13 

Columbiformes 
Columbidae 

Mourning Dove 3 0.01 0.01 0.02 0.01 0.02 
Falconiformes 

Falconidae 
Peregrine Falcon 1 0.72 --- 0.72 --- --- 

        
        
        



 

Table S6. Kidney THg (µg/g dw) continued. 
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              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Gruiformes 

Gruidae 
Sandhill Crane 7 0.13 0.00 0.13 0.12 0.13 
Whooping Crane 3 1.03 0.79 1.22 0.35 3.30 

Rallidae 
American Coot 10 0.63 0.09 0.58 0.38 1.32 
Clapper Rail 6 5.54 1.45 6.40 2.53 10.70 

Passeriformes 
Cinclidae 

American Dipper 2 1.89 0.36 1.92 1.60 2.25 
Emberizidae 

Lincoln's Sparrow 1 0.69 --- 0.69 --- --- 
Savannah Sparrow 2 0.71 0.06 0.71 0.65 0.77 
White-crowned Sparrow 3 0.17 0.03 0.19 0.13 0.22 

Icteridae 
Red-winged Blackbird 2 4.12 0.00 4.12 4.12 4.12 

Turdidae 
American Robin 1 2.22 --- 2.22 --- --- 

Podicipediformes 
Podicipedidae 

    Eared Grebe 1 5.78  --- 5.78 --- --- 
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Table S7.  Total mercury concentrations (µg/g dw) in bird feathers in western North America.  
Data represent the sample size (n), geometric mean (mean), standard error (SE), median, and the 
fifth and ninety-fifth percentile of the original raw data (n=922).  Species are organized by order, 
family, and then alphabetically. 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Accipitriformes 

Accipitridae 
Bald Eagle 7 20.27 3.78 25.20 10.38 31.98 

Pandionidae 
Osprey 8 7.89 1.94 7.02 3.69 17.74 

Anseriformes 
Anatidae 

Common Eider 2 0.15 0.09 0.18 0.09 0.26 
King Eider 35 1.05 0.06 1.00 0.60 1.66 
Northern Pintail 1 0.28 --- 0.28 --- --- 
Spectacled Eider 12 0.12 0.03 0.13 0.03 0.31 
Steller's Eider 4 0.16 0.04 0.15 0.10 0.26 
White-winged Scoter 1 1.23 --- 1.23 --- --- 

Charadriiformes 
Alcidae 

Kittlitz's Murrelet 15 1.15 0.12 1.13 0.72 1.79 
Charadriidae 

American Golden-plover 4 0.56 0.12 0.51 0.39 0.89 
Laridae 

Caspian Tern 49 8.96 1.29 8.75 1.71 33.88 
Forster's Tern 181 9.76 0.67 10.38 2.53 31.65 

Recurvirostridae 
American Avocet 126 2.43 0.17 2.38 0.63 6.19 
Black-necked Stilt 112 8.37 0.55 8.40 2.41 21.31 

Scolopacidae 
Dunlin 19 1.51 0.21 1.42 0.57 2.88 
Pectoral Sandpiper 14 2.74 0.43 2.28 1.54 7.06 
Red Phalarope 37 0.57 0.05 0.47 0.27 1.04 
Red-necked Phalarope 19 0.48 0.06 0.44 0.25 1.06 
Semipalmated Sandpiper 135 0.71 0.04 0.69 0.19 1.72 
Western Sandpiper 54 1.08 0.14 1.03 0.25 4.30 

Falconiformes 
Falconidae 

Peregrine Falcon 3 4.03 1.12 3.14 2.99 6.24 
Gaviiformes 

Gaviidae 
Pacific Loon 3 1.72 0.12 1.80 1.53 1.88 
Yellow-billed Loon 1 5.54 --- 5.54 --- --- 

Gruiformes 
Gruidae 

Sandhill Crane 6 0.24 0.07 0.23 0.11 0.52 
Rallidae 

Clapper Rail 26 1.98 0.30 2.10 0.69 4.75 



 

Table S7. Feather THg (µg/g dw) continued. 
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              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Passeriformes 

Cinclidae 
American Dipper 2 0.91 0.03 0.91 0.88 0.94 

Fringillidae 
Pine Siskin 1 0.05 --- 0.05 --- --- 

Troglodytidae 
    Marsh Wren 45 2.65 0.35 2.22 1.03 9.06 
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Table S8.  Bird blood-equivalent total mercury concentrations (µg/g ww) in western North 
America.  Data represent the sample size (n), geometric mean (mean), standard error (SE), 
median, and the fifth and ninety-fifth percentile of the original raw data (n=27,629).  Species are 
organized by order, family, and then alphabetically. 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Accipitriformes 

Accipitridae 
Bald Eagle 365 0.74 0.03 0.73 0.25 2.41 
Cooper's Hawk 6 0.04 0.00 0.04 0.03 0.04 
Golden Eagle 2 0.04 0.03 0.05 0.02 0.09 
Hawaiian Hawk 5 0.05 0.00 0.04 0.04 0.05 
Northern Goshawk 3 0.12 0.01 0.11 0.11 0.15 
Northern Harrier 1 0.27 --- 0.27 --- --- 
Red-tailed Hawk 4 0.07 0.00 0.07 0.06 0.08 

Pandionidae 
Osprey 241 0.13 0.01 0.13 0.04 0.59 

Anseriformes 
Anatidae 

American Wigeon 2 0.19 0.45 1.07 0.12 2.03 
Barrow's Goldeneye 64 0.25 0.01 0.24 0.18 0.44 
Black Scoter 7 0.26 0.05 0.28 0.16 0.44 
Blue-winged Teal 52 0.13 0.01 0.14 0.05 0.35 
Brant 30 0.01 0.00 0.01 0.00 0.02 
Canada Goose 159 0.01 0.00 0.01 0.00 0.06 
Canvasback 36 0.35 0.04 0.39 0.11 0.84 
Cinnamon Teal 59 0.25 0.02 0.25 0.11 0.52 
Common Eider 102 0.17 0.01 0.17 0.07 0.50 
Common Goldeneye 3 0.47 0.13 0.40 0.33 0.77 
Common Merganser 2 0.39 0.42 0.63 0.19 1.08 
Emperor Goose 4 0.08 0.04 0.11 0.03 0.18 
Gadwall 82 0.13 0.01 0.15 0.03 0.57 
Greater Scaup 64 0.62 0.05 0.68 0.20 1.43 
Green-winged Teal 96 0.23 0.03 0.22 0.05 1.11 
Harlequin Duck 238 0.18 0.01 0.21 0.02 0.96 
Hooded Merganser 1 0.07 --- 0.07 --- --- 
King Eider 143 0.21 0.01 0.21 0.08 0.52 
Lesser Scaup 71 0.13 0.01 0.11 0.05 0.58 
Mallard 322 0.07 0.00 0.07 0.01 0.48 
Northern Pintail 14 0.12 0.03 0.08 0.04 0.42 
Northern Shoveler 109 0.82 0.10 0.92 0.12 5.83 
Red-breasted Merganser 5 1.10 0.33 1.21 0.56 2.62 
Redhead 47 0.14 0.02 0.15 0.04 0.48 
Ruddy Duck 38 0.04 0.01 0.05 0.01 0.34 
Snow Goose 64 0.02 0.00 0.02 0.02 0.09 
Spectacled Eider 248 0.10 0.00 0.10 0.04 0.22 
Steller's Eider 53 0.12 0.01 0.09 0.04 0.43 
Surf Scoter 203 0.15 0.01 0.16 0.05 0.53 
Trumpeter Swan 2 0.02 0.00 0.02 0.02 0.02 



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 
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              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

White-winged Scoter 119 0.13 0.01 0.13 0.06 0.40 
Wood Duck 113 0.09 0.02 0.04 0.01 1.54 

Charadriiformes 
Alcidae 

Cassin's Auklet 22 0.24 0.02 0.23 0.13 0.45 
Common Murre 239 0.20 0.01 0.24 0.03 0.67 
Crested Auklet 1 0.16 --- 0.16 --- --- 
Kittlitz's Murrelet 33 0.18 0.02 0.19 0.09 0.39 
Marbled Murrelet 57 0.20 0.02 0.21 0.08 0.47 
Parakeet Auklet 1 0.28 --- 0.28 --- --- 
Pigeon Guillemot 27 2.08 0.19 1.99 0.90 3.80 
Rhinoceros Auklet 21 0.97 0.10 0.94 0.46 2.02 
Thick-billed Murre 141 0.12 0.01 0.12 0.02 0.56 
Tufted Puffin 13 0.41 0.02 0.39 0.31 0.60 
Whiskered Auklet 1 0.20 --- 0.20 --- --- 

Charadriidae 
American Golden-plover 50 0.16 0.01 0.16 0.08 0.33 
Black-bellied Plover 13 0.12 0.02 0.11 0.06 0.22 
Killdeer 136 0.14 0.01 0.15 0.04 0.53 
Mountain Plover 100 0.05 0.01 0.05 0.01 0.20 
Piping Plover 178 0.19 0.01 0.17 0.06 0.82 
Snowy Plover 132 0.69 0.05 0.72 0.14 3.56 

Haematopodidae 
American Oystercatcher 40 0.34 0.04 0.39 0.10 1.03 

Laridae 
Black Skimmer 69 0.90 0.11 1.07 0.24 4.29 
Black Tern 5 0.22 0.05 0.24 0.12 0.36 
Black-legged Kittiwake 1 0.47 --- 0.47 --- --- 
California Gull 689 0.15 0.00 0.15 0.05 0.52 
Caspian Tern 141 1.58 0.08 1.60 0.53 4.48 
Elegant Tern 6 0.81 0.04 0.83 0.71 0.94 
Forster's Tern 4644 2.35 0.02 2.37 0.87 6.39 
Franklin's Gull 164 0.16 0.01 0.16 0.06 0.39 
Glaucous Gull 61 0.28 0.02 0.28 0.13 0.53 
Glaucous-winged Gull 30 0.27 0.03 0.23 0.14 0.95 
Gull-billed Tern 1 0.87 --- 0.87 --- --- 
Laughing Gull 10 0.25 0.07 0.26 0.09 0.72 
Least Tern 619 1.15 0.04 1.07 0.36 4.95 
Little Tern 7 0.72 0.17 0.76 0.36 1.55 
Mew Gull 2 0.12 0.03 0.12 0.10 0.15 
Ring-billed Gull 63 0.12 0.01 0.11 0.05 0.31 
Royal Tern 10 1.74 0.21 1.90 0.88 2.61 
Sooty Tern 10 0.18 0.03 0.22 0.07 0.36 
Western Gull 6 1.16 0.24 1.23 0.61 1.98 

        
        



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 
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              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Recurvirostridae 
American Avocet 4099 0.35 0.01 0.34 0.07 1.84 
Black-necked Stilt 1639 0.79 0.02 0.77 0.17 3.84 

Scolopacidae 
Baird's Sandpiper 1 0.51 --- 0.51 --- --- 
Bar-tailed Godwit 3 0.34 0.13 0.39 0.19 0.57 
Black Turnstone 21 0.18 0.02 0.15 0.12 0.30 
Common Snipe 4 0.10 0.02 0.10 0.07 0.15 
Dunlin 280 0.18 0.01 0.19 0.06 0.45 
Hudsonian Godwit 3 0.22 0.07 0.17 0.15 0.39 
Long-billed Curlew 2 0.00 0.00 0.00 0.00 0.00 
Long-billed Dowitcher 104 0.36 0.03 0.45 0.10 1.00 
Pectoral Sandpiper 87 0.45 0.03 0.42 0.21 1.03 
Red Phalarope 181 0.24 0.02 0.23 0.06 1.01 
Red-necked Phalarope 141 0.18 0.01 0.17 0.06 0.52 
Rock Sandpiper 26 0.09 0.01 0.07 0.04 0.33 
Ruddy Turnstone 14 0.34 0.08 0.23 0.15 1.92 
Semipalmated Sandpiper 417 0.19 0.01 0.18 0.06 0.94 
Spotted Sandpiper 5 0.11 0.04 0.08 0.06 0.41 
Western Sandpiper 155 0.22 0.01 0.21 0.08 0.64 
Whimbrel 3 0.28 0.16 0.26 0.12 0.74 
Willet 61 0.78 0.14 0.54 0.14 7.38 
Wilson's Phalarope 12 0.66 0.17 0.49 0.26 2.55 

Columbiformes 
Columbidae 

Mourning Dove 21 0.01 0.00 0.01 0.00 0.02 
Falconiformes 

Falconidae 
American Kestrel 2 0.03 0.02 0.04 0.02 0.05 
Aplomado Falcon 30 0.32 0.05 0.36 0.07 0.98 
Peregrine Falcon 55 0.84 0.10 0.81 0.28 3.46 

Galliformes 
Odontophoridae 

Northern Bobwhite 1 0.02 --- 0.02 --- --- 
Phasianidae 

Ring-necked Pheasant 10 0.00 0.00 0.01 0.00 0.01 
Rock Ptarmigan 12 0.03 0.00 0.03 0.01 0.07 
Wild Turkey 2 0.02 0.00 0.02 0.02 0.02 

Gaviiformes 
Gaviidae 

Common Loon 682 0.89 0.03 0.88 0.25 3.90 
Pacific Loon 68 0.43 0.05 0.42 0.09 2.21 
Red-throated Loon 112 0.45 0.04 0.43 0.18 1.83 
Yellow-billed Loon 177 0.64 0.04 0.60 0.20 2.37 

        
        



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 
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              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 
Gruiformes 

Gruidae 
Sandhill Crane 45 0.02 0.00 0.02 0.00 0.07 
Whooping Crane 8 0.15 0.06 0.14 0.04 0.63 

Rallidae 
American Coot 729 0.19 0.01 0.17 0.04 1.70 
Clapper Rail 154 0.64 0.07 0.85 0.06 4.44 
Common Gallinule 1 0.06 --- 0.06 --- --- 
Sora 3 0.18 0.02 0.17 0.15 0.22 
Virginia Rail 3 1.70 0.12 1.63 1.55 1.91 

Passeriformes 
Alaudidae 

Horned Lark 11 0.02 0.00 0.02 0.01 0.04 
Cardinalidae 

Blue Grosbeak 1 0.01 --- 0.01 --- --- 
Lazuli Bunting 9 0.01 0.00 0.01 0.00 0.05 
Summer Tanager 1 0.09 --- 0.09 --- --- 
Western Tanager 1 0.08 --- 0.08 --- --- 

Cinclidae 
American Dipper 50 0.09 0.01 0.09 0.03 0.29 

Corvidae 
American Crow 1 0.03 --- 0.03 --- --- 

Emberizidae 
Abert's Towhee 5 0.03 0.01 0.03 0.02 0.08 
Brewer's Sparrow 2 0.12 0.02 0.12 0.11 0.14 
Dark-eyed Junco 6 0.09 0.02 0.10 0.05 0.15 
Green-tailed Towhee 1 0.08 --- 0.08 --- --- 
Lincoln's Sparrow 22 0.06 0.01 0.05 0.01 0.22 
Savannah Sparrow 7 0.06 0.01 0.06 0.03 0.10 
Song Sparrow 20 0.14 0.03 0.15 0.03 0.44 
Spotted Towhee 2 0.05 0.01 0.05 0.04 0.06 
Vesper Sparrow 1 0.22 --- 0.22 --- --- 
White-crowned Sparrow 51 0.02 0.01 0.02 0.00 0.36 

Fringillidae 
American Goldfinch 1 0.54 --- 0.54 --- --- 
Black Rosy-finch 9 0.19 0.03 0.18 0.13 0.40 
Gray-crowned Rosy-finch 6 0.17 0.01 0.19 0.13 0.19 
House Finch 1 0.03 --- 0.03 --- --- 
Pine Siskin 15 0.29 0.06 0.29 0.13 0.74 

Hirundinidae 
Bank Swallow 5 0.25 0.11 0.17 0.11 1.02 
Barn Swallow 77 0.21 0.02 0.20 0.07 0.77 
Cliff Swallow 346 0.11 0.00 0.12 0.03 0.31 
Northern Rough-winged 
Swallow 

4 0.05 0.00 0.05 0.04 0.06 

         



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 

SM‐46 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Purple Martin 57 0.08 0.00 0.08 0.05 0.14 
Tree Swallow 1314 0.23 0.01 0.25 0.06 0.82 
Violet-green Swallow 1 0.11 --- 0.11 --- --- 

Icteridae 
Brewer's Blackbird 1 0.19 --- 0.19 --- --- 
Brown-headed Cowbird 18 0.08 0.02 0.11 0.01 0.40 
Great-tailed Grackle 27 0.02 0.00 0.02 0.01 0.16 
Red-winged Blackbird 92 0.05 0.01 0.05 0.01 0.42 
Rusty Blackbird 187 0.14 0.01 0.15 0.02 0.74 
Western Meadowlark 8 0.02 0.00 0.02 0.01 0.05 
Yellow-headed Blackbird 151 0.04 0.00 0.05 0.01 0.14 

Laniidae 
Loggerhead Shrike 1 0.03 --- 0.03 --- --- 

Mimidae 
Gray Catbird 1 0.17 --- 0.17 --- --- 

Paridae 
Black-capped Chickadee 31 0.03 0.01 0.02 0.00 0.36 
Mountain Chickadee 26 0.38 0.04 0.36 0.16 0.96 
Oak Titmouse 1 0.12 --- 0.12 --- --- 

Parulidae 
Black-throated Gray 
Warbler 1 0.40 --- 0.40 --- --- 
Common Yellowthroat 10 0.12 0.02 0.13 0.06 0.23 
Macgillivray's Warbler 1 0.02 --- 0.02 --- --- 
Northern Waterthrush 26 0.15 0.02 0.14 0.08 0.40 
Orange-crowned Warbler 6 0.19 0.07 0.16 0.09 0.67 
Wilson's Warbler 7 0.21 0.03 0.22 0.13 0.30 
Yellow Warbler 23 0.12 0.02 0.12 0.05 0.31 
Yellow-breasted Chat 30 0.09 0.02 0.07 0.02 1.09 
Yellow-rumped Warbler 2 0.30 0.03 0.30 0.27 0.32 

Passeridae 
House Sparrow 7 0.01 0.00 0.01 0.01 0.03 

Polioptilidae 
Blue-gray Gnatcatcher 2 0.08 0.01 0.08 0.07 0.09 

Regulidae 
Ruby-crowned Kinglet 9 0.18 0.05 0.16 0.07 0.49 

Sittidae 
Red-breasted Nuthatch 2 0.45 0.11 0.47 0.37 0.57 

Sturnidae 
European Starling 5 0.03 0.01 0.03 0.02 0.05 

Troglodytidae 
Bewick's Wren 3 0.17 0.06 0.16 0.10 0.30 
Cactus Wren 2 0.17 0.02 0.17 0.15 0.19 
House Wren 698 0.19 0.00 0.21 0.05 0.46 
Marsh Wren 359 0.16 0.00 0.15 0.08 0.50 

        



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 

SM‐47 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Turdidae 
American Robin 10 0.15 0.07 0.26 0.02 1.02 
Gray-cheeked Thrush 21 0.03 0.00 0.03 0.02 0.07 
Mountain Bluebird 11 0.11 0.02 0.09 0.06 0.32 
Varied Thrush 16 0.02 0.01 0.02 0.01 0.17 
Western Bluebird 43 0.11 0.01 0.12 0.04 0.28 

Tyrannidae 
Ash-throated Flycatcher 83 0.19 0.02 0.16 0.04 0.81 
Black Phoebe 2 0.16 0.11 0.20 0.09 0.31 
Dusky Flycatcher 4 0.62 0.11 0.69 0.42 0.84 
Olive-sided Flycatcher 3 0.18 0.04 0.21 0.12 0.24 
Vermilion Flycatcher 2 0.75 0.15 0.76 0.62 0.90 
Western Kingbird 5 0.19 0.19 0.05 0.03 2.27 
Willow Flycatcher 52 0.12 0.02 0.12 0.03 0.75 
Yellow-bellied Flycatcher 2 0.06 0.00 0.06 0.06 0.06 

Vireonidae 
Bell's Vireo 5 0.81 0.05 0.82 0.69 0.94 
Warbling Vireo 11 0.09 0.01 0.09 0.05 0.20 

Pelecaniformes 
Ardeidae 

Black-crowned Night-
heron 

237 0.29 0.02 0.29 0.06 1.25 

Cattle Egret 1 0.21 --- 0.21 --- --- 
Great Blue Heron 279 0.21 0.01 0.21 0.07 0.81 
Great Egret 4 0.38 0.10 0.31 0.27 0.75 
Least Bittern 3 0.13 0.02 0.15 0.10 0.16 
Little Blue Heron 10 0.19 0.05 0.13 0.08 0.87 
Reddish Egret 30 0.15 0.01 0.14 0.09 0.27 
Snowy Egret 73 0.29 0.03 0.33 0.04 1.57 
Tricolored Heron 119 0.19 0.01 0.21 0.07 0.40 

Pelecanidae 
American White Pelican 100 0.68 0.08 0.57 0.11 9.92 
Brown Pelican 126 0.33 0.03 0.34 0.05 1.10 

Threskiornithidae 
Roseate Spoonbill 9 0.46 0.07 0.46 0.27 0.82 
White-faced Ibis 361 0.12 0.00 0.11 0.05 0.38 

Piciformes 
Picidae 

Hairy Woodpecker 1 0.17 --- 0.17 --- --- 
Northern Flicker 1 1.27 --- 1.27 --- --- 
Red-naped Sapsucker 3 0.06 0.03 0.06 0.03 0.11 

Podicipediformes 
Podicipedidae 

Clark's Grebe 227 0.83 0.06 0.85 0.15 6.73 
Eared Grebe 416 0.33 0.02 0.29 0.06 1.73 
Horned Grebe 2 4.75 1.89 5.13 3.39 6.88 



 

Table S8. Blood-equivalent THg (µg/g ww) continued. 

SM‐48 

 

              5th  95th 
Order Family Common name n Mean SE Median percentile percentile 

Pied-billed Grebe 48 0.37 0.03 0.37 0.20 0.77 
Red-necked Grebe 28 0.31 0.04 0.23 0.14 1.56 
Western Grebe 639 0.37 0.02 0.34 0.08 2.35 

Procellariiformes 
Diomedeidae 

Black-footed Albatross 16 2.72 0.31 2.70 1.43 5.41 
Laysan Albatross 204 0.65 0.02 0.64 0.31 1.37 

Hydrobatidae 
Fork-tailed Storm-petrel 3 1.38 0.33 1.28 0.98 2.06 
Leach's Storm-petrel 6 1.44 0.21 1.51 0.91 2.03 

Procellariidae 
Northern Fulmar 13 1.89 0.30 2.07 0.79 4.20 

Strigiformes 
Strigidae 

Ferruginous Pygmy-owl 5 0.05 0.01 0.03 0.03 0.11 
Great Horned Owl 2 0.19 0.05 0.20 0.15 0.24 
Northern Saw-whet Owl 3 0.90 0.14 1.03 0.69 1.07 

Tytonidae 
Barn Owl 1 0.02 --- 0.02 --- --- 

Suliformes 
Phalacrocoracidae 

Double-crested Cormorant 310 0.65 0.04 0.66 0.12 3.98 
Pelagic Cormorant 1 2.05 --- 2.05 --- --- 

Sulidae 
    Brown Booby 19 0.27 0.03 0.25 0.14 0.53 



 

SM‐49 

 

Table S9.  Percentage of birds exceeding blood-equivalent total mercury concentrations (µg/g 
ww) in western North America.  Data represent the sample size (n) and percentage of individual 
birds based on original raw data (n=27,629).  Species are organized by order, family, and then 
alphabetically.  Values are rounded to the nearest percent. 

Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Accipitriformes 
Accipitridae 

Bald Eagle 365 97% 72% 30% 8% 4% 2% 
Cooper's Hawk 6 0% 0% 0% 0% 0% 0% 
Golden Eagle 2 0% 0% 0% 0% 0% 0% 
Hawaiian Hawk 5 0% 0% 0% 0% 0% 0% 
Northern Goshawk 3 0% 0% 0% 0% 0% 0% 
Northern Harrier 1 100% 0% 0% 0% 0% 0% 
Red-tailed Hawk 4 0% 0% 0% 0% 0% 0% 

Pandionidae 
Osprey 241 30% 6% 2% 0% 0% 0% 

Anseriformes 
Anatidae 

American Wigeon 2 50% 50% 50% 50% 0% 0% 
Barrow's Goldeneye 64 78% 2% 0% 0% 0% 0% 
Black Scoter 7 57% 0% 0% 0% 0% 0% 
Blue-winged Teal 52 35% 2% 0% 0% 0% 0% 
Brant 30 0% 0% 0% 0% 0% 0% 
Canada Goose 159 0% 0% 0% 0% 0% 0% 
Canvasback 36 86% 28% 0% 0% 0% 0% 
Cinnamon Teal 59 73% 7% 0% 0% 0% 0% 
Common Eider 102 39% 6% 0% 0% 0% 0% 
Common Goldeneye 3 100% 33% 0% 0% 0% 0% 
Common Merganser 2 50% 50% 50% 0% 0% 0% 
Emperor Goose 4 0% 0% 0% 0% 0% 0% 
Gadwall 82 39% 10% 0% 0% 0% 0% 
Greater Scaup 64 95% 69% 23% 2% 2% 0% 
Green-winged Teal 96 55% 24% 7% 2% 2% 2% 
Harlequin Duck 238 55% 16% 5% 1% 0% 0% 
Hooded Merganser 1 0% 0% 0% 0% 0% 0% 
King Eider 143 53% 6% 0% 0% 0% 0% 
Lesser Scaup 71 31% 8% 0% 0% 0% 0% 
Mallard 322 22% 5% 1% 0% 0% 0% 
Northern Pintail 14 36% 0% 0% 0% 0% 0% 
Northern Shoveler 109 83% 61% 48% 31% 19% 14% 
Red-breasted Merganser 5 100% 100% 60% 20% 0% 0% 
Redhead 47 38% 6% 0% 0% 0% 0% 
Ruddy Duck 38 11% 3% 0% 0% 0% 0% 
Snow Goose 64 0% 0% 0% 0% 0% 0% 
Spectacled Eider 248 8% 0% 0% 0% 0% 0% 
Steller's Eider 53 25% 4% 2% 0% 0% 0% 
Surf Scoter 203 33% 6% 0% 0% 0% 0% 



 

Table S9. Percentage exceeding blood-equivalent THg (µg/g ww) continued. 

SM‐50 

 

Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Trumpeter Swan 2 0% 0% 0% 0% 0% 0% 
White-winged Scoter 119 24% 4% 1% 0% 0% 0% 
Wood Duck 113 38% 28% 19% 1% 1% 0% 

Charadriiformes 
Alcidae 

Cassin's Auklet 22 73% 0% 0% 0% 0% 0% 
Common Murre 239 60% 14% 1% 0% 0% 0% 
Crested Auklet 1 0% 0% 0% 0% 0% 0% 
Kittlitz's Murrelet 33 45% 0% 0% 0% 0% 0% 
Marbled Murrelet 57 54% 5% 0% 0% 0% 0% 
Parakeet Auklet 1 100% 0% 0% 0% 0% 0% 
Pigeon Guillemot 27 100% 100% 89% 48% 30% 4% 
Rhinoceros Auklet 21 100% 90% 48% 10% 0% 0% 
Thick-billed Murre 141 35% 6% 0% 0% 0% 0% 
Tufted Puffin 13 100% 15% 0% 0% 0% 0% 
Whiskered Auklet 1 100% 0% 0% 0% 0% 0% 

Charadriidae 
American Golden-plover 50 30% 2% 0% 0% 0% 0% 
Black-bellied Plover 13 15% 0% 0% 0% 0% 0% 
Killdeer 136 37% 7% 1% 1% 0% 0% 
Mountain Plover 100 6% 1% 0% 0% 0% 0% 
Piping Plover 178 40% 12% 4% 2% 0% 0% 
Snowy Plover 132 92% 71% 29% 11% 7% 2% 

Haematopodidae 
American Oystercatcher 40 70% 40% 8% 0% 0% 0% 

Laridae 
Black Skimmer 69 99% 65% 52% 19% 13% 7% 
Black Tern 5 80% 0% 0% 0% 0% 0% 
Black-legged Kittiwake 1 100% 0% 0% 0% 0% 0% 
California Gull 689 33% 6% 1% 0% 0% 0% 
Caspian Tern 141 100% 96% 81% 28% 10% 6% 
Elegant Tern 6 100% 100% 0% 0% 0% 0% 
Forster's Tern 4644 100% 99% 93% 62% 33% 18% 
Franklin's Gull 164 35% 1% 0% 0% 0% 0% 
Glaucous Gull 61 79% 8% 2% 0% 0% 0% 
Glaucous-winged Gull 30 67% 17% 0% 0% 0% 0% 
Gull-billed Tern 1 100% 100% 0% 0% 0% 0% 
Laughing Gull 10 70% 20% 0% 0% 0% 0% 
Least Tern 619 99% 89% 53% 20% 9% 7% 
Little Tern 7 100% 57% 43% 0% 0% 0% 
Mew Gull 2 0% 0% 0% 0% 0% 0% 
Ring-billed Gull 63 11% 2% 0% 0% 0% 0% 
Royal Tern 10 100% 100% 80% 20% 0% 0% 
Sooty Tern 10 60% 0% 0% 0% 0% 0% 
Western Gull 6 100% 100% 67% 17% 0% 0% 



 

Table S9. Percentage exceeding blood-equivalent THg (µg/g ww) continued. 

SM‐51 

 

Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Recurvirostridae 
American Avocet 4099 70% 36% 16% 4% 1% 0% 
Black-necked Stilt 1639 92% 69% 40% 17% 8% 5% 

Scolopacidae 
Baird's Sandpiper 1 100% 100% 0% 0% 0% 0% 
Bar-tailed Godwit 3 67% 33% 0% 0% 0% 0% 
Black Turnstone 21 33% 5% 0% 0% 0% 0% 
Common Snipe 4 0% 0% 0% 0% 0% 0% 
Dunlin 280 48% 4% 0% 0% 0% 0% 
Hudsonian Godwit 3 33% 0% 0% 0% 0% 0% 
Long-billed Curlew 2 0% 0% 0% 0% 0% 0% 
Long-billed Dowitcher 104 71% 44% 6% 0% 0% 0% 
Pectoral Sandpiper 87 97% 40% 8% 1% 0% 0% 
Red Phalarope 181 55% 22% 6% 0% 0% 0% 
Red-necked Phalarope 141 44% 6% 2% 0% 0% 0% 
Rock Sandpiper 26 19% 4% 0% 0% 0% 0% 
Ruddy Turnstone 14 71% 29% 14% 7% 7% 0% 
Semipalmated Sandpiper 417 40% 14% 4% 0% 0% 0% 
Spotted Sandpiper 5 20% 0% 0% 0% 0% 0% 
Western Sandpiper 155 57% 10% 0% 0% 0% 0% 
Whimbrel 3 67% 33% 0% 0% 0% 0% 
Willet 61 79% 56% 36% 30% 25% 16% 
Wilson's Phalarope 12 92% 42% 25% 25% 8% 0% 

Columbiformes 
Columbidae 

Mourning Dove 21 0% 0% 0% 0% 0% 0% 
Falconidae 

American Kestrel 2 0% 0% 0% 0% 0% 0% 
Aplomado Falcon 30 73% 27% 7% 3% 0% 0% 
Peregrine Falcon 55 96% 73% 38% 15% 9% 4% 

Galliformes 
Odontophoridae 

Northern Bobwhite 1 0% 0% 0% 0% 0% 0% 
Phasianidae 

Ring-necked Pheasant 10 0% 0% 0% 0% 0% 0% 
Rock Ptarmigan 12 0% 0% 0% 0% 0% 0% 
Wild Turkey 2 0% 0% 0% 0% 0% 0% 

Gaviiformes 
Gaviidae 

Common Loon 682 98% 79% 43% 16% 8% 5% 
Pacific Loon 68 79% 38% 18% 6% 4% 3% 
Red-throated Loon 112 89% 42% 13% 4% 3% 3% 
Yellow-billed Loon 177 94% 60% 26% 8% 2% 1% 

          
          



 

Table S9. Percentage exceeding blood-equivalent THg (µg/g ww) continued. 

SM‐52 

 

Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Gruiformes 
Gruidae 

Sandhill Crane 45 0% 0% 0% 0% 0% 0% 
Whooping Crane 8 38% 13% 0% 0% 0% 0% 

Rallidae 
American Coot 729 41% 18% 9% 4% 3% 2% 
Clapper Rail 154 79% 60% 42% 21% 11% 6% 
Common Gallinule 1 0% 0% 0% 0% 0% 0% 
Sora 3 33% 0% 0% 0% 0% 0% 
Virginia Rail 3 100% 100% 100% 0% 0% 0% 

Passeriformes 
Alaudidae 

Horned Lark 11 0% 0% 0% 0% 0% 0% 
Cardinalidae 

Blue Grosbeak 1 0% 0% 0% 0% 0% 0% 
Lazuli Bunting 9 0% 0% 0% 0% 0% 0% 
Summer Tanager 1 0% 0% 0% 0% 0% 0% 
Western Tanager 1 0% 0% 0% 0% 0% 0% 

Cinclidae 
American Dipper 50 24% 0% 0% 0% 0% 0% 

Corvidae 
American Crow 1 0% 0% 0% 0% 0% 0% 

Emberizidae 
Abert's Towhee 5 0% 0% 0% 0% 0% 0% 
Brewer's Sparrow 2 0% 0% 0% 0% 0% 0% 
Dark-eyed Junco 6 0% 0% 0% 0% 0% 0% 
Green-tailed Towhee 1 0% 0% 0% 0% 0% 0% 
Lincoln's Sparrow 22 9% 0% 0% 0% 0% 0% 
Savannah Sparrow 7 0% 0% 0% 0% 0% 0% 
Song Sparrow 20 40% 5% 0% 0% 0% 0% 
Spotted Towhee 2 0% 0% 0% 0% 0% 0% 
Vesper Sparrow 1 100% 0% 0% 0% 0% 0% 
White-crowned Sparrow 51 16% 4% 2% 0% 0% 0% 

Fringillidae 
American Goldfinch 1 100% 100% 0% 0% 0% 0% 
Black Rosy-finch 9 33% 0% 0% 0% 0% 0% 
Gray-crowned Rosy-finch 6 0% 0% 0% 0% 0% 0% 
House Finch 1 0% 0% 0% 0% 0% 0% 
Pine Siskin 15 87% 20% 0% 0% 0% 0% 

Hirundinidae 
Bank Swallow 5 40% 20% 20% 0% 0% 0% 
Barn Swallow 77 53% 13% 1% 0% 0% 0% 
Cliff Swallow 346 19% 1% 0% 0% 0% 0% 
Northern Rough-winged Swallow 4 0% 0% 0% 0% 0% 0% 
Purple Martin 57 0% 0% 0% 0% 0% 0% 



 

Table S9. Percentage exceeding blood-equivalent THg (µg/g ww) continued. 
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Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Tree Swallow 1314 58% 19% 3% 1% 1% 0% 
Violet-green Swallow 1 0% 0% 0% 0% 0% 0% 

Icteridae 
Brewer's Blackbird 1 0% 0% 0% 0% 0% 0% 
Brown-headed Cowbird 18 22% 0% 0% 0% 0% 0% 
Great-tailed Grackle 27 7% 0% 0% 0% 0% 0% 
Red-winged Blackbird 92 8% 3% 0% 0% 0% 0% 
Rusty Blackbird 187 36% 13% 2% 0% 0% 0% 
Western Meadowlark 8 0% 0% 0% 0% 0% 0% 
Yellow-headed Blackbird 151 1% 0% 0% 0% 0% 0% 

Laniidae 
Loggerhead Shrike 1 0% 0% 0% 0% 0% 0% 

Mimidae 
Gray Catbird 1 0% 0% 0% 0% 0% 0% 

Paridae 
Black-capped Chickadee 31 19% 3% 0% 0% 0% 0% 
Mountain Chickadee 26 92% 31% 0% 0% 0% 0% 
Oak Titmouse 1 0% 0% 0% 0% 0% 0% 

Parulidae 
Black-throated Gray Warbler 1 100% 0% 0% 0% 0% 0% 
Common Yellowthroat 10 20% 0% 0% 0% 0% 0% 
Macgillivray's Warbler 1 0% 0% 0% 0% 0% 0% 
Northern Waterthrush 26 23% 0% 0% 0% 0% 0% 
Orange-crowned Warbler 6 33% 17% 0% 0% 0% 0% 
Wilson's Warbler 7 71% 0% 0% 0% 0% 0% 
Yellow Warbler 23 17% 0% 0% 0% 0% 0% 
Yellow-breasted Chat 30 17% 7% 7% 0% 0% 0% 
Yellow-rumped Warbler 2 100% 0% 0% 0% 0% 0% 

Passeridae 
House Sparrow 7 0% 0% 0% 0% 0% 0% 

Polioptilidae 
Blue-gray Gnatcatcher 2 0% 0% 0% 0% 0% 0% 

Regulidae 
Ruby-crowned Kinglet 9 44% 11% 0% 0% 0% 0% 

Sittidae 
Red-breasted Nuthatch 2 100% 50% 0% 0% 0% 0% 

Sturnidae 
European Starling 5 0% 0% 0% 0% 0% 0% 

Troglodytidae 
Bewick's Wren 3 33% 0% 0% 0% 0% 0% 
Cactus Wren 2 0% 0% 0% 0% 0% 0% 
House Wren 698 53% 4% 2% 0% 0% 0% 
Marsh Wren 359 26% 5% 0% 0% 0% 0% 

          
          



 

Table S9. Percentage exceeding blood-equivalent THg (µg/g ww) continued. 
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Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Turdidae 
American Robin 10 60% 10% 10% 0% 0% 0% 
Gray-cheeked Thrush 21 0% 0% 0% 0% 0% 0% 
Mountain Bluebird 11 18% 0% 0% 0% 0% 0% 
Varied Thrush 16 0% 0% 0% 0% 0% 0% 
Western Bluebird 43 23% 0% 0% 0% 0% 0% 

Tyrannidae 
Ash-throated Flycatcher 83 45% 25% 4% 1% 0% 0% 
Black Phoebe 2 50% 0% 0% 0% 0% 0% 
Dusky Flycatcher 4 100% 75% 0% 0% 0% 0% 
Olive-sided Flycatcher 3 67% 0% 0% 0% 0% 0% 
Vermilion Flycatcher 2 100% 100% 0% 0% 0% 0% 
Western Kingbird 5 40% 40% 40% 20% 0% 0% 
Willow Flycatcher 52 17% 10% 4% 2% 0% 0% 
Yellow-bellied Flycatcher 2 0% 0% 0% 0% 0% 0% 

Vireonidae 
Bell's Vireo 5 100% 100% 0% 0% 0% 0% 
Warbling Vireo 11 9% 0% 0% 0% 0% 0% 

Pelecaniformes 
Ardeidae 

Black-crowned Night-heron 237 70% 22% 8% 1% 1% 0% 
Cattle Egret 1 100% 0% 0% 0% 0% 0% 
Great Blue Heron 279 51% 10% 3% 1% 0% 0% 
Great Egret 4 100% 25% 0% 0% 0% 0% 
Least Bittern 3 0% 0% 0% 0% 0% 0% 
Little Blue Heron 10 40% 20% 10% 0% 0% 0% 
Reddish Egret 30 27% 0% 0% 0% 0% 0% 
Snowy Egret 73 68% 26% 8% 1% 0% 0% 
Tricolored Heron 119 51% 2% 1% 0% 0% 0% 

Pelecanidae 
American White Pelican 100 85% 57% 31% 15% 11% 10% 
Brown Pelican 126 79% 31% 7% 2% 2% 1% 

Threskiornithidae 
Roseate Spoonbill 9 100% 33% 0% 0% 0% 0% 
White-faced Ibis 361 17% 3% 1% 0% 0% 0% 

Piciformes 
Picidae 

Hairy Woodpecker 1 0% 0% 0% 0% 0% 0% 
Northern Flicker 1 100% 100% 100% 0% 0% 0% 
Red-naped Sapsucker 3 0% 0% 0% 0% 0% 0% 

Podicipediformes 
Podicipedidae 

Clark's Grebe 227 90% 70% 44% 16% 11% 9% 
Eared Grebe 416 62% 39% 19% 3% 1% 0% 
Horned Grebe 2 100% 100% 100% 100% 100% 50% 
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Order Family Common name n 

≥ 0.2 
µg/g 
ww 

≥ 0.5 
µg/g 
ww 

≥ 1.0 
µg/g 
ww 

≥ 2.0 
µg/g 
ww 

≥ 3.0 
µg/g 
ww 

≥ 4.0 
µg/g 
ww 

Pied-billed Grebe 48 94% 29% 2% 0% 0% 0% 
Red-necked Grebe 28 64% 18% 14% 4% 0% 0% 
Western Grebe 639 66% 38% 18% 7% 3% 2% 

Procellariiformes 
Diomedeidae 

Black-footed Albatross 16 100% 100% 100% 75% 44% 19% 
Laysan Albatross 204 100% 74% 17% 0% 0% 0% 

Hydrobatidae 
Fork-tailed Storm-petrel 3 100% 100% 67% 33% 0% 0% 
Leach's Storm-petrel 6 100% 100% 83% 17% 0% 0% 

Procellariidae 
Northern Fulmar 13 100% 100% 77% 54% 23% 15% 

Strigiformes 
Strigidae 

Ferruginous Pygmy-owl 5 0% 0% 0% 0% 0% 0% 
Great Horned Owl 2 50% 0% 0% 0% 0% 0% 
Northern Saw-whet Owl 3 100% 100% 67% 0% 0% 0% 

Tytonidae 
Barn Owl 1 0% 0% 0% 0% 0% 0% 

Suliformes 
Phalacrocoracidae 

Double-crested Cormorant 310 87% 62% 31% 12% 8% 5% 
Pelagic Cormorant 1 100% 100% 100% 100% 0% 0% 

Sulidae 
    Brown Booby 19 74% 16% 0% 0% 0% 0% 
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