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INTRODUCTION

In an increasingly anthropogenic world where funding for 
conservation activities is limited, effective landscape-scale 
conservation planning tools have been progressively embraced 
by resource management agencies to maximize both conservation 
investments and reduce impacts of anthropogenic disturbances. 
This has corresponded with rapid expansion of landscape-scale, 
spatially-explicit models of species’ habitat, such as resource 
selection functions (RSF) [1-3], which simultaneously give insight 
into the ecology of species and can be used to produce maps to help 
guide where conservation actions should be most effective. Often, 
RSF models do not encompass the entire range of a focal species 
and therefore biological relationships are extrapolated to novel 
areas, not included in the development of the RSF models, when 
decisions must be made. While extrapolating known relationships 
represents the best available information to decision makers, past 
work has shown limits in the transferability of RSF models to 
novel areas for a wide variety of taxa from low mobility plants [4] 
to semi-migratory birds [5].

A species response to particular habitat components can change 
as a function of the prevalence of the resource, which is referred 
to as the functional response of a species [6]. Understanding 
functional responses related to habitat selection through RSF 
modeling can elucidate, disturbance threshold values for habitat 

Abstract

We developed range-wide population and habitat models for Greater Sage-grouse (Centrocercus 
urophasianus) that account for regional variation in habitat selection and relative densities of 
birds for use in conservation planning and risk assessments. We developed a probabilistic model of 
occupied breeding habitat by statistically linking habitat characteristics within 4-miles of an occupied 
lek using a non-linear machine learning technique (Random Forests). Habitat characteristics used 
were quantified in GIS and represent standard abiotic and biotic variables related to sage-grouse 
biology. Statistical model fit was high (mean correctly classified = 82.0%, range = 75.4%¬ – 88.0%) 
as were cross-validation statistics (mean = 80.9%, range = 75.1% – 85.8%). We also developed a 
spatially explicit model to quantify the relative density of breeding birds across each Greater Sage-
grouse management zone. The models demonstrate distinct clustering of relative abundance of sage-
grouse populations across all management zones. On average approximately half of the breeding 
population is predicted to be within 10% of the occupied range. We also found 80% of sage-grouse 
populations were contained in 25 – 34% of the occupied range within each management zone. Our 
range-wide population and habitat models account for regional variation in habitat selection and the 
relative densities of birds, thus they can serve as a consistent and common currency to assess how 
sage-grouse habitat and populations overlap with conservation actions or threats over the entire 
sage-grouse range. We also quantified differences in functional habitat responses and disturbance 
thresholds across the Western Association of Fish and Wildlife (WAFWA) management zones using 
statistical relationships identified during habitat modeling. Even for a species as specialized as 
Greater sage-grouse, our results show that ecological context matters in both the strength of habitat 
selection (i.e. functional response curves) and response to disturbance. 

Greater sage-grouse / Jeannie Stafford, USFS
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quantity and quality, tolerance 
to perturbations, and cumulative 
effects [7]. This is important as 
conservation plans generally 
require targets for the amount 
of habitat required for specific 
species in order for managers 
to make cost effective decisions 
and balance competing interests 
[8]. Unfortunately, setting 
conservation targets based 
upon thresholds defined for 
other regions is precarious [7] 
because thresholds can vary 
tremendously across species and 
landscapes [9]. Landscape-scale 
modeling across broad extents 
is important in understanding 
how functional responses may 
vary for wide-ranging species, 
as landscapes are seldom 
homogeneous across large 
extents.

Data on the distributions of 
abundance are rare for most 
taxa, yet if available they can 
provide crucial baseline data 
for monitoring populations 
and conservation actions [10]. 
Abundance is often clustered 
and highly variable among sites 
across the range of a species, 
typically being high in relatively 
few sites and low in the majority 
[11]. Knowledge and mapping of 
population centers or ‘hotspots’ 
can be critically important for 
conservation planning as many 
species with broad distributions 
occur in densities of several 
orders of magnitude higher in 
hotspots compared to occupied 
habitats outside of hotspot 
boundaries [12]. Population 
centers of many species can be 
stable over several decades even 
while population sizes fluctuate 
[12]. Consequently, habitat 
protection can affect drastically 
different proportions of target 
populations depending on 
overlap with population centers. 
Ideally, conservation planning 
would make the best use 
of information related to 

population abundance and 
habitat requirements, while 
accounting for regional 
gradients and differences 
in functional responses. 
Spatial and temporal data in 
numerous ecological studies 
are often used for independent 
methods to derive proxies 
for population abundance and 
measures of habitat quality, 
which are helpful to inform 
environmental management and 
policy decisions [13]. However, 
when broad scale population 
survey data exist, probabilistic 
surfaces of density indices 
and habitat selection indices 
can be integrated to create 
analytical tools across broad 
spatial scales [14]. Integrative 
methodology could create 
composite spatially-explicit 
indices that reflect demographic 
and habitat information and 
make predictions to guide 
landscape-level conservation 
actions. Unfortunately, such 
data are rare in conservation 
planning because the broad scale 
population surveys are lacking 
for many species and habitat 
modeling is generally conducted 
at scales smaller than a species 
range. 

Greater sage-grouse 
(Centrocercus urophasianus; 
hereafter sage-grouse) is a wide 
ranging species of conservation 
concern that occurs throughout 
the sagebrush ecosystem in 
the Intermountain West of the 
United States [15: see Figure 
1]. Currently sage-grouse 
are considered “warranted, 
but precluded” for listing 
under the United States 
Endangered Species Act of 
1973 (ESA; U.S. Fish and 
Wildlife Service [USFWS] 
2010), Endangered under the 
Canadian Species at Risk Act, 
and “Near Threatened” on 
the International Union for 

Conservation of Nature (IUCN) 
Red List. Because of the wide 
reaching implications of an ESA 
listing on western lands within 
North America, monitoring 
sage-grouse populations is 
imperative to help inform 
land and wildlife management 
agencies responsible for 
regulatory actions and policies. 
Lek sites (traditional breeding 
grounds) provide opportunity to 
count sage-grouse annually and 
monitor demographic responses. 
Leks are typically located in 
nesting habitat where males are 
most likely to encounter females 
for breeding opportunities [16], 
and several studies support this 
hypothesis for both Greater 
Prairie chickens (Tympanuchus 
cupido) and sage-grouse [17-
22]. Although sage-grouse leks 
have been counted each year 
since the 1950s, wildlife agencies 
have drastically increased their 
efforts in surveying known 
leks and searching for new lek 
sites since the 1990s (personal 
communication, Tom Remington 
Western Association of Fish and 
Wildlife Agencies). Broad-scale 
sage-grouse lek survey data 
managed by each state with 
sage-grouse provides a unique 
opportunity to identify sources 
of temporal and spatial variation 
in functional responses across 
the entire range of a species 
that inhabits most of western 
United States. Furthermore, 
findings from such analysis could 
be used to target thresholds for 
conservation planning activities 
for a species of increasingly high 
conservation concern.	
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OBJECTIVES

1.	 Develop range-wide habitat 
and population models 
that identify regional 
variation in habitat selection 
and relative densities of 
sage-grouse for use in 
conservation planning and 
risk assessments.

2.	 Assess the importance 
of variability in habitat 
selection and thresholds of 
disturbance, and identify 
differences in functional 
responses across the range of 
sage-grouse.

STUDY AREA

Our study area includes the entire range of North American sage-
grouse populations with the exception of six active leks located in 
Canada (Figure 1). Canadian leks were not included in our modeling 
because of significant differences in available spatial data between 
the U.S. and Canada. Loss and degradation of native vegetation 
have affected much of the sagebrush (Artemisia spp.) ecosystem 
in western North America, and this ecosystem has become increas-
ingly fragmented because of conifer encroachment, exotic annual 
grass invasion, and anthropogenic development [23]. The WAFWA 
Conservation Strategy for Greater Sage-grouse [24] delineated 
seven sage-grouse management zones to guide conservation and 
management (Table 1). The boundaries of these management zones 
were delineated based on differences in ecological and biological 
attributes (i.e. floristic provinces) rather than on arbitrary political 
boundaries [24] (Figure 1). Maps representing the major ecological 
gradients and subsequent dominant landcover types are shown in 
Appendix I. We stratified our analyses by sage-grouse management 
zones because spatial partitioning of data improves model fit where 
regional niche variation occurs [25] because of fundamental differ-
ences in the ecological gradients and different functional responses 
at regional scales. 

Figure 1. Location of Greater Sage-grouse Management Zones used to spatially subset analyses and the location 
of active Greater Sage-grouse leks counted during 2010-2014. Percentages are derived from the sum of the mean 
peak count of displaying sage-grouse at individual leks during 2010-2014 within each management zone divided 
by the range-wide total, to give context to the amount of known populations within each management zone. 
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Table 1. Ecological descriptions of Western Association of Fish and Wildlife Agencies Greater         
Sage-grouse Management Zones.

Management 
Zone Ecological Descriptions of Management Zones a b

Northern Great 
Plains (MZ 1)

The Northern Great Plains includes the north-eastern portions of the sage-grouse range. This 
management zone experiences the most precipitation, thus it contains larger portions of the 
landscape dominated by grasslands, smaller patches of sagebrush, and contains more silver sagebrush 
(Artesmisa cana var. cana) than other management zones. MZ I also has the highest amount of land 
in private ownership and compared to other management zones, it has the highest amount of cropland.

Wyoming Basin 
(MZ II)

The Wyoming Basin is characterized by large expanses of Wyoming big sagebrush (Artemisia 
tridentata var. wyomingensis) with little fragmentation; however it experiences the greatest amount 
of oil and gas development. Most of the precipitation in this management zone comes in the form of 
winter snowfall. MZ II contains the highest densities of sage-grouse across their range. 

Southern Great 
Basin (MZ III)

The Southern Great Basin includes the southern and western most populations of sage-grouse. MZ III 
is the most arid of all the management zones and includes a mix of Wyoming big sagebrush, mountain 
big sagebrush (A. tridentata var. vaseyana), low sagebrush (A. arbuscula), and black sagebrush 
(A. nova). Topography is rugged with sagebrush on many of the valley floors transitioning to arid 
coniferous forests at higher elevations on the mountain slopes. 

Snake River Plain 
(MZ IV)

The Snake River Plain encompasses the north-central populations of sage-grouse. Like MZ’s III and 
IV, it is characterized by salt deserts in the lower elevations and conifer forests at higher elevations. 
Wyoming big sagebrush and basin big sagebrush (A. tridentata var. tridentata) are the dominant 
species, with mountain big sagebrush at higher elevations. MZ VI contains the second highest density 
of sage-grouse across the species range. The Snake River Plains management zone also experiences 
dense cropland areas, however they are clustered at lower elevationsb.

Northern Great 
Basin (MZ V)

The Northern Great Basin is similar to the Southern Great Basin, but it is less arid with precipitation 
occurring primarily in the winter and spring. Similar to MZ’s III & IV, lower elevations are dominated 
by salt deserts and higher elevations are dominated by conifer forest. 

Columbia Basin 
(MZ VI)

The Colombia Basin is isolated from the rest of the sage-grouse range and is contained entirely within 
Washington state. Wyoming big sagebrush and basin big sagebrush are predominate species. MZ VI 
contains the lowest elevation sagebrush across the range and experiences high amounts of cropland in 
comparison to all other management zones with the exception of the Northern Great Plains.

Colorado Plateau 
(MZ VII)

The Colorado Plateau is the south-eastern most management zone and contains a small fraction of the 
overall sage-grouse populations. It is similar to the Southern Great Basin MZ, but it receives more 
precipitation. Soil types within the Colorado Plateau greatly restrict the sagebrush distribution and it 
contains a very small portion of the overall occupied habitat. 

a Descriptions of management zones were originally summarized [1] and adapted by WAFWA for analyses for both the 2004 
Conservation Assessment of Greater Sage-grouse and Sagebrush Habitats [2] and 2006 Greater Sage-grouse Comprehensive 
Conservation Strategy [3]. 

b We created maps of the ecological gradients and major land cover types between Greater Sage-grouse Management Zones for further 
reference in Appendix I. We focused maps on the major ecological gradients and subsequent landcover (Figures 3-9).
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METHODS

Breeding Habitat Model 

We developed a binomial 
probabilistic model of occupied 
breeding habitat by quantifying 
habitat characteristics, within 
6.4 km (4-miles) of an occupied 
sage-grouse lek, for available 
points using a classification 
instance of the non-parametric 
model Random Forests [26-29]. 
Model predictions produce an 
estimated probability for each 
120-m2 grid cell within each 
sage-grouse management zone. 
Components of sage-grouse 
habitat were compiled into a 
GIS database from various 
sources, but generally represent 
standard abiotic and biotic 
variables used in past work to 
represent sage-grouse habitat 
(Table 2).

Lek Survey Data 

We compared active lek 
locations to pseudo-absence 
locations to generate models of 
breeding sage-grouse habitat 
across the range. The hotspot 
hypothesis of lek evolution 
suggests leks are typically 
located in nesting habitat 
where males will most likely 
encounter pre-nesting females 
who are attracted by important 
resources [17,30], such as forbs 
required for pre-breeding 
[31] and sagebrush cover for 
nesting [32]. Additionally, 
most sage-grouse nesting 
locations are located within 
6.4 km of a lek [19,33,34]. 
Further, recent studies have 
shown that telemetry-based 
models of nesting sage-grouse 
predicted almost 2 times 
more nesting habitat around 
leks than at random locations 
[5,20]. We therefore believe 
sage-grouse lek locations are 
a good predictor of important 

breeding areas. We used lek 
data assembled and proofed 
by WAFWA to develop both 
our breeding habitat model 
and breeding population index 
model. For the purposes of both 
models, a lek was defined as 
active if > 2 males were counted 
during 2010-2014 and the last 
count was not a zero. 

Habitat Selection and Scale 

The desired geographic scale 
of understanding is paramount 
in studies aimed at obtaining 
inference on selection behavior 
[31]. Our study was specifically 
designed to assess first-order 
selection of sage-grouse 
seasonal home ranges [35,36]. 
The rationale for using the 
first-order scale was two-fold: 
(1) the primary objective was 
to develop population and 
habitat models that account 
for regional variation within 
each sage-grouse management 
zone, and (2) broad-scale 
lek data represent locations 
of populations and are not 
adequate to appropriately 
model second or third-order 
habitat selection [35,36]. Lower 
orders of habitat selection are 
generally derived from finer 
scale telemetry data at the 
individual level. Our results 
will be highly relevant to 
conservation practitioners 
and researchers working at 
regional spatial scales, because 
research conducted at range-
wide extents are rare for most 
species, but can be critical to 
making informed decisions. For 
example, findings could inform 
the first-order of multi-scale 
habitat selection models using 
integrated resource selection 
functions [37], or hierarchical 
Bayesian models [38]. Using 
first-order assessments 
here that produce a relative 
probability for each 120-m2 
grid cell across the range of 

the species allows for later 
integration with other research 
including at finer scales (e.g. 
2nd – 4th orders). We believe 
investigating first-order habitat 
selection across the entire 
sage-grouse range is important, 
because understanding 
landscape context can elucidate 
why results of second and third-
order habitat selection studies 
can seemingly give conflicting 
results and varying thresholds, 
even for well-studied topics [39].

Pseudo-absence Data 

Recent survey efforts have been 
intensive enough that although 
not all leks have been identified, 
we are confident that the spatial 
process is well represented in 
the data. To generate pseudo-
absence locations we modeled 
the spatial process of known 
leks, using an isotropic kernel 
estimate [40], and use the 
inverse of the density estimate 
to weight samples. A gradient 
function allowed for a tension 
parameter to control the 
proximity of pseudo-absence 
locations in relation to known 
lek locations. We utilized the 
pseudo-absence model available 
in the spatialEco library [41] 
and defined the sigma (distance 
smoothing for the kernel; 
bandwidth) as 18 km and the 
gradient as 1 thus, providing no 
weighting to the pseudo-absence 
diffusion process. This ensured 
that we were sampling the 
range of habitat variation within 
each sage-grouse management 
zone. To avoid class imbalance 
[42] (ie., zero-inflation) issues, 
we generated an equal ratio of 
pseudo-absence to lek locations 
and compared resulting sample 
variation against population 
data (rasters) to evaluate if 
we had an adequate sample 
to support model fit, spatial 
estimation, and inference. We 
chose an 18 km bandwidth 



8

Table 2. Description of explanatory variables used to predict the occupied Greater Sage-grouse breeding habitat 
across 11 western U.S. States during 2010–2014. All variables with the exception of the climate date predictor 
group were quantified using at a 6.4 km buffer moving window (130.1 km²). 

Name Abbreviation Source 
(years)

Native 
resolution

Resampled 
resolution Description a Justification [references]

General Habitat Predictor Group

Low Sage-
brush

LowSB4mi 
FM

LANDFIRE 
EVT 1.2 
(2010) b

30 m2 120 m2
% of grid cells 

classified as Low 
Sagebrush 

Established positive re-
lationship between sage-
grouse abundance and 
sagebrush [7]

Tall 
Sagebrush TalSB4mi FM

LANDFIRE 
EVT 1.2 
(2010) b

30 m2 120 m2
% of grid cells 

classified as Low 
Sagebrush 

Established positive re-
lationship between sage-
grouse abundance and 
sagebrush [7]

All 
Sagebrush

ALLSB4mi 
FM

LANDFIRE 
EVT 1.2 
(2010) b

30 m2 120 m2
% of grid cells 

classified as Low 
Sagebrush 

Established positive re-
lationship between sage-
grouse abundance and 
sagebrush [7]

Canopy 
Cover CC4miFM

LANDFIRE 
Fuels 1.2 

(2010)
30 m2 120 m2

% Canopy Cover 
in 10% increments 

from 15% – 95%

Established negative 
relationship between sage-
grouse and conifers [8-10]

Grassland/ 
Herbaceous GH4mFM

LANDFIRE 
Fuels 1.2 

(2010)
30 m2 120 m2 % of grid cells clas-

sified as Grassland

Established negative 
relationship between 
sage-grouse abundance and 
grasslands [7]

Perennial 
Water

NHD_Peren-
nial4miFM

National 
Hydrological 
Dataset NHD 

(2012)

Vector of 
Lines & 

Polygons
120 m2

NHD perennial flow 
lines within a 6440m 

moving window, 
multiplied by the 

average line length 
per cell (133.2m)

Established negative 
relationship of riparian 
areas to nest site selection 
[11]and established positive 
relationship between sage-
grouse populations and 
riparian habitats [12]

Intermittent 
Water

NHD_In-
termittent-

4miFM
NHD (2012)

Vector of 
Lines & 

Polygons
120 m2 See Perennial 

Water See Perennial Water

Springs and 
Seeps

Springsand-
SeepsDensi-

ty4miFM
NHD (2012)

Vector of 
Lines & 

Polygons
120 m2 See Perennial 

Water See Perennial Water

Topographic 
Wetness 

Index

TWI4mi 
FM(SD)

NHD (2012) 
& NED 

elevation Data 
(2013) 30 m2 120 m2 Index of wetness See Perennial Water

Climatic Data Predictor Group

Gross 
Primary 

Production

GPP(years) 
FM(SD)

MODIS 
NASA EODP 

(2009-13)
1 km2 120 m2

Index of early 
Brood Rearing 
Habitat (mean of 
GPP from 5-15 
through 6-15)

Forbs are important predic-
tors of early brood survival 
and habitat selection [11]

Degree Days 
> 5°C dd5120m c USFS (1961-

1990) [13] 1 km2 120m2
Number of days 
that reach a tem-
perature ≥ 5°C

Large scale ecological 
driver of land types. 
Hypothesized regional 
scale relationship between 
sagebrush landscapes 
with higher production. 
Documented carry over 
effects [12]



9

Mean Annual 
Precipitation map120m c USFS (1961-

1990) [13]

1 km2 120m2
Mean annual pre-
cipitation (mm)

Large scale ecological 
driver of land types. 
Hypothesized regional 
scale relationship between 
sagebrush landscapes 
with higher production. 
Documented carry over 
effects [12,14]

Annual 
Drought 

Index
adi120m c USFS (1961-

1990) [13] 1 km2 120 m2 Ratio = dd5 / map

Large scale ecological 
driver of land types. 
Hypothesized regional 
scale relationship between 
sagebrush landscapes 
with higher production. 
Documented carry over 
effects [12]

Landform Variables Predictor Group

Roughness Rough4miSD
National El-
evation Data 
NED (2013)

30 m2 120m2

Standard deviation 
in elevation within 
a 6440m buffer of a 
grid cell

Established negative 
relationship between sage-
grouse and rough terrain 
[8,10]

Elevation Elev4mi FM NED (2013) 30 m2 120m2
Average elevation 
within a 6440m buf-
fer of the grid cell

Hypothesized relationship 
between grouse populations 
and areas with higher 
productivity because of 
elevation

Steep Steep4mi FM NED (2013) 30 m2 120m2

% of landscape clas-
sified as steep using 
Theobald LCAP 
tool

Established negative 
relationship between sage-
grouse and rough terrain 
[8,10]

Disturbance Variables Predictor Group

Human 
Disturbance 

Index

dist_noag4m-
FM

NLCD 
Disturbed 

Classesd (2011)
30 m2 120m2

Landcover types 
associated with 
human presence

Established negative 
relationship between sage-
grouse and human activity 
[15,16]

Oil & Gas 
Wells

ogptdsm4(2)
miFM

IHS oil and 
gas database 
(19xx-2014)

Point 120m2 Density of oil and 
gas well locations a

Established negative 
relationship between 
sage-grouse and oil and gas 
development [17,18]

Burned 
Landscapes

F(-
Years)4miFM

WFDSS-Geo-
Mac Fire 

Perimeters 
(2000-08, 2009-

2013, 1984-
2013)

Vector of 
Polygons 120m2

Proportion of 
grid cells that are 
burned within a 
6440 m area

Established negative 
relationship between fire 
and sagebrush habitat 
[19,20]

Agriculture 
Lands tillage4mi FM NASS (2008-

2014) 30 m2 120m2

Proportion of grid 
cells that have been 
tilled since 2008 
within a 6440 m 
area

Established negative 
relationship between sage-
grouse and cropland [10,21]

a All variables were resampled to a 120m2 pixel. All moving windows were calculated at a 6440-m (4-mile) buffer. Oil and gas layers were 
also calculated at a 2-mile moving window because of variations in the distance the impact was detected [15]. We did not use the 120m2 
pixels for modeling because leks are a surrogate of habitat at a larger scale.

b Landfire vegetation groupings defined in Johnson et al. SAB [22].

c Because climate grids native resolution change at a 1-km scale and are highly spatially correlated, we did not resample the grids using a 
6440m moving window.

d NLCD Urban development classes: Developed-High Intensity, Developed-Low Intensity, Developed-Medium Intensity, Developed-
Open Space and NLCD impervious surfaces. The index also included roads (TIGER), oil & gas wells (compiled by each state), Wind 
Turbines (FCC obstruction database), Transmission lines (Ventyx), Pipelines (Ventyx)
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because recent research has 
shown this scale represents 
the scale at which breeding 
populations move across 
the landscape to fulfill other 
seasonal habitat needs [43] and 
because we specifically designed 
our study to capture large 
first-order habitat selection. 
To accurately define 1st order 
sage-grouse habitat availability 
extents, we matched the 
spatial scale of availability to 
the desired scale of inference 
because matching such scales 
is critical to obtaining reliable 
estimates on selection behavior 
[44].

Statistical Model

Nonparametric methods are 
becoming much more common in 
ecological modeling, supporting 
inference of nonlinear and 
spatial dynamics [26-29]. 
Random Forests uses multiple 
realizations of the data, with 
no distributional assumptions, 
that effectively converges on 
a stable estimate in very high 
dimensional statistical spaces 
[27,45]. Model interpretation 
and inference was supported 
following methods presented 
in [26,27,45]. The expected 
complexity in interaction effects, 
potential latent variables, high 
spatial variability representing 
both global and local effects 
and nonlinear relationships, 
all support a non-linear model 
such as Random Forests as an 
appropriate choice. 

We modeled selection of 
breeding season habitat within 
the species range [35,36] using 
Random Forests, which is a 
bootstrapped Classification 
and Regression Tree (CART) 
approach [46]. Random Forests 
is based on the principle of weak 
learning, where a set of weak 
subsample models converge 
on a stable global model. This 

method has been shown to 
provide stable estimates while 
being robust to many of the 
issues associated with spatial 
data (e.g., autocorrelation, 
non-stationarity). It also fits 
complex, nonlinear relationships, 
accounts for high dimensional 
interaction effects and accounts 
for hierarchically structured 
data inherent in non-stationary 
processes [26,27]. We expected 
both global trends in sage-
grouse habitat selection as well 
as localized variation in habitat 
selection within each of the 7 
sage-grouse management zones. 
First and second order variation 
are addressed in the hierarchical 
nature of the iterative node 
partitioning, making this a 
good model to implement when 
global trend and local variation 
[47] are expected to occur in 
the same model [27]. Analysis 
was conducted in program R 
[48] using the rgdal [49], sp 
[50] and raster [51] libraries 
to read spatial data, assign 
values from spatial covariates 
to the point observations of 
our dependent variable, and 
make spatial predictions. We 
used the implementation of 
Random Forests [52] in the R 
library randomForest [53] and 
followed the model selection 
method introduced in Murphy 
et al. (2010) using the rfUtilities 
library [54]. Parsimony in 
Random Forests is important 
not only for producing a more 
interpretable model but also 
reduces any fitting of the 
model to statistical noise, thus 
providing a better model fit 
[27,45]. 

Evaluation of Model Fit and 
Predictions 

Model fit is an important 
assessment in evaluating the 
utility of a model, however one 
can argue that measures of 
prediction and model stability 

are even more important for 
conservation planning and risk 
analyses. This is because the 
biggest danger to generalization 
and thus spatial predictions to 
novel areas, is over-fitting of 
the training data [55]. Hence 
validation should consist of 
evaluating the degree of over-
fitting, by comparing model 
performance on training and 
holdout sets. If performance 
is significantly better on the 
training set, over-fitting is 
implied [55]. To assess model fit, 
we used OOB error (out of bag) 
and confusion matrixes [53]. 
The OOB error represents the 
internal evaluation of global and 
class error against the withheld 
data from the Bootstrap, and 
represents an error distribution 
across all Bootstrap replicates in 
the ensemble where the median 
error is used to represent the 
OOB error. We evaluated model 
stability and performance 
using cross-validation methods 
[27], where 10% of data were 
withheld from training the 
model and used as a validation 
dataset. Over-fitting was 
assessed by comparing error 
rates between OOB and cross-
validation. We would have 
concerns of over-fitting the data 
if error rates were much higher 
in the OOB sample vs. our k-fold 
cross validation error rates.

We also tested the sensitivity 
of the fitted model to errors 
in classification between used 
vs. available locations in the 
rfUtilities library [54] by 
randomly changing known lek 
locations to pseudo-absence 
points and evaluating cross-
classification errors. We 
systematically changed known 
lek locations to zeros in 5% 
increments to understand the 
influence of pseudo-absence 
errors on overall error rates 
and model stability. This was 
done because an unknown 
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portion of our pseudo-absence 
locations were expected to fall 
within suitable sage-grouse 
breeding habitat. The primary 
motivation behind implementing 
a sensitivity test was to address 
model sensitivity to any lack 
of independence. A pseudo-
replication problem would 
also affect the independence 
(correlation) of the Bootstraps 
and potentially overfit the 
model. Since ensemble models 
are based on the premise of 
weak learning and variation 
in the Bootstrap, if the data is 
homogenous, the Bootstraps 
would not be independent and 
the ensemble would exhibit 
considerable correlation and 
effectively overfit the model. 
In evaluating model fit and 
convergence we did not observe 
any indication of ensemble 
correlation. The sensitivity test 
allowed better understanding 
of overall error rates within our 
model and more importantly, 
it allowed assessment of 
model stability and prediction 
congruency across a range of lek 
locations that are misclassified 
as pseudo-absence. 

Regional Variation in 
Habitat Selection and 
Disturbance Thresholds 

We used probability partial plots 
to elucidate habitat relationships 
of the modeled covariates after 
partialling out (holding constant) 
the other variables in the model. 
To improve interpretability, we 
plotted each given covariate 
for all management zones on 
the same plot. The probability 
partial plots were derived using 
the rfUtilities library [54]. 
Management Zone VII: 
Management zone VII, while 
modeled, has a very small 
sample size (~ 0.3% of counted 
birds between 2010 − 2014) and 
only contains 652 km² of the 
192,381 km² modeled breeding 

habitat (see Table 5). Therefore 
we did not focus on these results 
in the general manuscript or 
include MZ VII in Figures 
highlighting functional habitat 
responses.

Breeding Population Index 
Model 

Knowledge of high-abundance 
population centers for priority 
species represents a starting 
point to frame regional 
conservation initiatives and 
can direct management actions 
to landscapes where they will 
have the largest benefit to 
regional populations [56,57]. We 
developed a model to quantify 
the relative density of breeding 
birds within each management 
zone. This was motivated by 
past work across the range that 
showed sage-grouse populations 
are highly clustered [24,33,58]. 
Fortunately, sage-grouse 
are one of the few species in 
which extensive data sets exist 
on distribution and relative 
abundance across their entire 
breeding distribution, making 
an analysis of this scale possible 
[15,58].

To map high-abundance To map 
high-abundance population 
centers, we followed methods 
and logic very similar to models 
developed by the U.S. Geological 
Survey (USGS) for Nevada and 
the Bi-state populations of sage-
grouse [38]. Distribution models 
that combine information about 
habitat quality and abundance 
of sage-grouse from multiple 
data sources are valuable 
given recent intensification 
of sage-grouse management 
and policymaking [38]. We 
modified their methods [38] 
to better represent a sage-
grouse population index, 
because their original technique 
was developed to highlight 
management priority areas. Our Greater sage-grouse 

final population index model 
incorporated two standardized 
kernel based point density 
models, representing local and 
regional scales and our Breeding 
Habitat Model described above. 
The results of our models are 
grids that represent an index to 
the relative amount of breeding 
birds for each 120 m² within 
each management zone. Our 
final population index model 
incorporates spatial patterns of 
sage-grouse habitat selection 
with contemporary information 
of abundance allowing the use 
of the available data [13,38]. 
Population indexes, such as 
ours, allow conservation actions 
to be targeted to the right 
landscapes, and help identify 
threats to a species that are 
occurring in areas which could 
impact large proportions of 
sage-grouse populations [13,14]. 
proportions of the sage-grouse 
populations [13,14]. 
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Kernel Index 
Kernel density functions have 
been commonly used in ecology 
to delineate home ranges of 
individual animals and to map 
concentrated areas of use by 
populations [59,60]. Within 
our study, we used the kernel 
density function to groups 
cells of concentrated use by 
attributing count data to a grid 
placed over top of a sage-grouse 
management zone [59,60]. Using 
kernels to define population 
concentrations is consistent with 
past work defining core areas 
for sage-grouse [33]. We created 
two kernel models based on 
two separate bandwidth values 
(i.e., 6.4 and 18 km), which 
reflect published information 
on sage-grouse movement and 
seasonal space use patterns. The 
6.4 km bandwidth was chosen 
to correspond with utilization 
distribution of areas conducive 
for reproduction in relation to 
lek sites (e.g., breeding, nesting, 
brood-rearing), as demonstrated 
in populations at multiple sites 
[19,33,34]. Although leking 
areas generally serve as hubs 
for nesting and are usually 
centered across seasonal areas 
[34], some sage-grouse move 
relatively long distances to 
access wintering areas [34,43]. 
Thus, we incorporated the 
larger spatial scale of 18 km to 
reflect these life history patterns 
[43]. Combining the scales 
appropriately placed greater 
emphasis on adjacent areas, thus 
preventing oversmoothing, but 
still allowed for representation 
of sage-grouse occurrence at 
further distances. We used 
SAGA GIS version 2.1.0 [61] 
to create two Gaussian kernel 
density functions. The same set 
of active lek locations from our 
habitat model defined the point 
density for our kernel models 
and each point was weighted 
by the mean peak count of 
displaying sage-grouse from 

2010-2014. Following logic of Coates et al. [14], we standardized 
each kernel using a row standardization. We then added each 
grid together and divided by 2, using the raster library [51] in 
R. The output is a 120 m2 raster that represents a multi-scale 
density process of sage-grouse lek counts across two biologically 
meaningful scales (Equation 1). 
Equation 1: Kernel Index = (standardized 6.4 km kernel + standardized 18 km 
kernel) / 2 

Population Index
Our Kernel Index summarizes the best available information on 
the relative density of birds across the entire sage-grouse range. 
We selected bandwidths to correspond with linear movement 
distance of sage-grouse within the breeding season [33], as well as 
movements between breeding and other seasonal habitats [43]. We 
believe the combination of both kernels into a single Kernel Index 
represent ecologically meaningful areas for sage-grouse. However, 
kernel functions are inherently an estimator of the spatial point-
density process, thus they are not explicitly linked to habitat 
features.

We wanted to create a population index to further refine our 
Kernel Index. First, we wanted a method that would reduce the 
importance of lands with low probabilities of being habitat based 
upon known sage-grouse habitat relationships. Secondly, we 
wanted to increase the value of lands with high probabilities of 
being occupied habitat, but further away from known leks, thus 
having lower value in the Kernel Index. We did this by multiplying 
the Kernel Index by the probability of our Breeding Habitat Model 
(Equation 2).

Equation 2: Population Index = (Kernel Index * Breeding Habitat Model) 

Highest population index values arise where high breeding 
habitat probabilities co-occur with landscapes having higher lek 
counts. The use of this equation also effectively reduces the value 
of landscapes near larger sage-grouse leks predicted to be non-
habitat. Lastly, multiplying the Kernel Index by the breeding 
habitat model increases the value of lands further from known 
sage-grouse leks that have high probabilities of containing breeding 
sage-grouse. We felt this was important because our data set 
utilized all known sage-grouse population survey data across their 
range, however our survey data do not represent all leks. 

Aggregation using Population Index Volumes 

We ordered all population index values from each grid cell within a 
management zone from the highest to lowest density. We selected 
the highest density cells in order until they summed to 10% of the 
total population index within a management zone. We repeated the 
selection process in 10% increments selecting the highest remaining 
grid cell densities first until we had 10 bins (i.e. highest density bin 
represented the top 10% of the population, 100% bin representing 
all breeding areas identified in modeling). Results are cumulative, 
such that all bins contain all preceding bins of 10% increments. We 
then calculated the percent of the occupied distribution that each 
incremental 10% population bin covered. 
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RESULTS

Breeding Habitat Model 

On average our breeding habitat 
model correctly classified 
82.0% (Range 75.4% − 88.0%) of 
hold-out data from out-of-bag 
bootstrap samples (Table 3). Our 
models also correctly classified 
independent k-fold hold-out data 
(mean across management zones 
= 80.9%; range 75.0 – 85.8%) 
(Table 3). General agreement 
between out-of-bag error rates 
and k-fold cross validation 
indicate stability in our model 
to predict independent data 
and lack of over-fitting (Table 3). 
We documented higher error 
rates within pseudo-absence 
classes compared to our active 
lek class (Table 4), however 
simulations indicated estimates 
were stable across a wide 
range of pseudo-absence errors 
(0 − 30% simulated errors in 
5% increments). For example, 
the mean standard error (SE) 
across the 7 management zones 
with 20% simulated pseudo-
absence errors = 0.032. Low SEs 
indicates model stability and the 
ability of the random forests to 
predict though statistical noise 
arising from false absences. 
We documented an ~ 3% error 
increase for every 5% increase 
in false-absences. 

Models demonstrate breeding 
habitat is highly condensed 
within the current occupied 
range of sage-grouse (Figure 
2). All currently active leks 
occurred on probabilities > 0.65; 
we therefore used this threshold 
to quantify the amount of 
breeding habitat. When we use 
this threshold value, 26% of 
the current occupied range is 
predicted to be breeding habitat 
(Table 5, Figure 2). Across the 
range of sage-grouse, general 
habitat variables and climatic 
gradient variables had greater 

Table 3. Percent of K-fold cross validation hold out data set locations 
(10%) which were correctly classified by a model built with 90% of the 
data set. These results are compared to internal model fit statistics 
generated via bootstrap resampling (1 – Out of Bag Error Bootstrap 
Error Rates). 

Management Zone 1 - Out of Bag 
Error

K-Fold Cross Validation 
% Correctly Classified

MZ I − Northern Great Plains 76.3 75.9
MZ II − Wyoming Basin 75.4 75.0
MZ III − Southern Great Basin 85.9 85.3
MZ IV − Snake River Plain 83.9 83.6
MZ V − Northern Great Basin 76.3 75.1
MZ VI − Columbia Basin 88.0 85.8
MZ VII − Colorado Plateau 88.0 85.4
Avg. 82.0 80.9

 
Table 4. Classification confusion error rates for leks and pseudo-absence 
locations. Error rates were generated from bootstrap resampling. 
Across management zones there was a general pattern of higher errors 
in the pseudo-absence class, with the exception of the two smallest 
management zones, the Columbia Basin and the Colorado Plateau. 

Pseudo-absence Leks
MZ I − Northern Great Plains 29.8% 16.9%
MZ II − Wyoming Basin 32.7% 16.5%
MZ III − Southern Great Basin 18.0% 9.9%
MZ IV − Snake River Plain 21.0% 11.3%
MZ V − Northern Great Basin 29.4% 19.7%
MZ VI − Columbia Basin 12.0% 12.0%
MZ VII − Colorado Plateau 12.0% 10.0%

Table 5. Area (km²) of Occupied Range [23] and modeled breeding habitat 
across the Greater Sage-grouse range in North Americaa. Breeding 
habitat probabilities were calculated using a 0.65 threshold, because all 
current active leks had a probability > 0.65.

Management Zone Occupied 
Range

Modeled 
Breeding 
Habitat

Percent of 
Occupied 

Range
MZ I − Northern Great Plains a 186,480 41,731 22%
MZ II − Wyoming Basin 149,820 48,189 32%
MZ III − Southern Great Basin 124,057 36,629 30%
MZ IV − Snake River Plain 156,360 46,700 30%
MZ V − Northern Great Basin 78,293 14,018 18%
MZ VI − Columbia Basin 11,161 4,462 40%
MZ VII − Colorado Plateau 4,777 652 14%
Range wide 1 710,948 192,381 26%

a Does not include the Canadian portion of the range. 
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importance than disturbance 
variables in predicting occupied 
breeding habitat (Table 6, 
Appendix II). Not surprisingly, 
the percent of a landscape 
dominated by sagebrush within 
130.1 km² (50.24 mile²; 32,153 
acres) was the top variable in 
4 of the 7 models, and was in 
the top five variables for all 
models (Table 6). We documented 
variation in habitat selection for 
sagebrush but also show similar 
patterns across the range 
(Figure 3). However, functional 
habitat selection for sagebrush 
modeled for the Northern Great 
Plains and Columbia Basin 
management zones diverged 
from results for the rest of the 
management zones, because 

Table 6. Top 5 variables and their importance values selected for each management zone from 2010 – 2014. 
Importance values are scaled by management zone, so that the top variable equals 1 and the remaining 
variables are a proportion derived by dividing by the top variable, and are derived from probability scaled 
partial plots in the RandomForest package in R.

Management 
Zone 1st Variable 2nd Variable 3rd Variable 4th Variable 5th Variable

Northern Great 
Plains (I)

Canopy Cover All Sagebrush Roughness Topographic 
Wetness Index

Gross Primary 
Production

1.00 0.63 0.57 0.55 0.45

Wyoming Basin 
(II)

All Sagebrush Canopy Cover Annual Drought 
Index

Degree Days > 
5°C

Mean Annual 
Precipitation

1.00 0.73 0.68 0.59 0.49

Southern Great 
Basin (III)

All Sagebrush Degree Days > 
5°C Elevation Annual 

Drought Index Canopy Cover

1.00 0.79 0.70 0.54 0.48

Snake River 
Plain (IV)

Canopy Cover Annual 
Drought Index All Sagebrush Degree Days > 

5°C
Gross Primary 

Production
1.00 0.60 0.59 0.51 0.50

Northern Great 
Basin (V)

All Sagebrush Annual 
Drought Index Low Sagebrush Mean Annual 

Precipitation Degree Days > 5°C

1.00 0.96 0.91 0.79 0.65

Columbia Basin 
(VI)

Elevation Degree Days > 
5°C

Grassland/ 
Herbaceous

Annual 
Drought Index All Sagebrush

1.00 0.42 0.41 0.27 0.22

Colorado 
Plateau (VII)

All Sagebrush Low Sagebrush
Human 

Disturbance 
Index

Oil & Gas Wells

1.00 0.67 0.48 0.40

sage-grouse were modeled to 
occupy habitats with lower 
proportions of sagebrush in 
zones I and VI (Figure 3). All 
sage-grouse breeding habitats 
showed strong avoidance of 
tree cover; however strength 
of avoidance varied between 
management zones (Figure 4). 
The disturbance index was 
selected within models for all 
management zones except the 
Northern Great Basin with a 
variable importance range of 
(0.48 Colorado Plateau – 0.09 
Southern Great Basin, Table 6 
and Appendix II). While threshold 
values between management 
zones varied similar to 
tree canopy cover, models 
documented clear thresholds 

in amount of landscape level 
disturbance tolerated (Figure 
5). Models show that Northern 
Great Plains management zone 
had the lowest threshold for 
the disturbance index (2.9% 
when p ~ 0.65, Figure 5). They 
also documented variability and 
differences in threshold values 
for the amount of tillage in the 
landscape, with sage-grouse in 
management zone I showing 
the least tolerance for tilled 
landscapes (Figure 6). Despite 
variability in disturbance 
and non-habitat thresholds, 
we found similar patterns 
in the peaks of probability 
distributions (p > 0.8) for our 
two strongest historic climatic 
predictors (Annual Drought 
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Figure 2. Breeding habitat model of Greater Sage-grouse developed within each of the 7 Management Zones. 
The breeding habitat model is a spatially explicit probability prediction that the surrounding landscape will 
contain enough breeding habitat to support Greater Sage-grouse lek formation. All active leks within the sage-
grouse range (2010 − 2014) occurred on probabilities > 0.65.

Index [Figure 7] and Degree 
Days > 5 °C [Figure 8]). A current 
measure of climate as measured 
by Gross Primary Production 
had lower variable importance 
than our historic climate 
envelopes in model selection 
(Table 6). We documented similar 
patterns of selection for Gross 
Primary Production, although 
peaks varied across the range 
with the lowest selected range 
of Gross Primary Production in 
the Northern Great Basin and 
the highest in the Northern 
Great Plains (Figure 9). Graphical 
partial probability plots of 
all variables are available 
in alphabetical order by the 
variable abbreviation in Appendix 
III. 

Breeding Population Index 
Model 

We demonstrate distinct 
clustering in the relative 
abundance of sage-grouse 
populations within each 
management zone (Figure 
10, Figure 11). On average 
approximately half of the 
breeding population is predicted 
to be within 10% of the occupied 
range. Across all management 
zones, all populations visually 
demonstrated asymptotic 
properties between the each 
additional 10% of the population 
and the area required to contain 
these populations (Figure 11). 
For example, to go from 80% 
of the population index to 90% 

increased the area required by 
44% on average (range 41% MZ 
II – 50% MZ I; Figure 11).

DISCUSSION

Even for a species as specialized 
as sage-grouse, we showed 
that ecological context 
mattered in both the strength 
of habitat selection and values 
of disturbance thresholds. Our 
range-wide population and 
habitat models accounted for 
regional variation in habitat 
selection and the relative 
densities of birds. These models 
can serve as a consistent and 
common currency to assess how 
sage-grouse habitat (Figure 2) and 
populations (Figure 10) overlap 
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with conservation actions or threats over the entire sage-grouse 
range. Our models demonstrated high statistical model fit (Table 
3, Table 4). Similar to Coates et al. [14] our models utilize the best 
information available at a range-wide scale. Our models were built 
within management zones to account for differences across the 
entire range.

Our work clearly shows variation in habitat selection and varying 
thresholds in response to disturbance across the range. Partial 
probability plots in our analyses are intended to highlight the how 
ecological gradients (Appendix I) across vast occupied range (Table 5) 
can change functional habitat responses, and ultimately predictions 
of breeding habitat. This is important, because our work implies 
careful consideration must be given to the validity of extrapolating 
results of studies in one management zone to others especially 
if they have vastly different ecological context. The scale of our 
work was intentionally range-wide, thus we addressed first-order 
selection of habitat. Therefore threshold values identified in this 
manuscript are meaningful at the first order scale, however we 
would strongly caution against implementing our results into 
management, until multi-scale (1st – 3rd order) and cumulative 
effects are investigated simultaneously. We also believe formal 
tests should be implemented to evaluate the differences of the 
functional response distribution such as a Kolmogorov-Smirnov 
test, or simulations and randomization tests. Because there are 7 
management zones and because of the large number of variables 
selected within our breeding habitat models, simulations to 
formalize tests will be computationally expensive, but needed. 

Where study boundaries are drawn fundamentally determines 
what is learned about the ecology of the species. Science and 
information is developing rapidly and information on first-order 
functional responses could be used in conjunction with other 
information to help refine sage-grouse management zones and 
disturbance thresholds in the future. Analyzing sage-grouse 
populations by management zones is supported in the literature 
and our analysis confirms differences between management zones 
in both habitat selection and thresholds to disturbance. It would 
also reason that sub-management zone level variation exists and 
populations close to but on different sides of current management 
zone boundaries could exhibit similar patterns in habitat selection. 
Modeling at lower levels of the habitat selection hierarchy could 
also increase predictive power of models and elucidate biological 
relationships not evident at the first-order scale. We believe future 
efforts could complement our analyses by re-running analyses 
with boundaries defined by range-wide genetic clustering of 
population units. Once habitat selection models are computed at 
these smaller extents, these population units could be grouped by 
niche similarity and habitat responses to refine management zones. 
Formal ecological and statistical criterion for establishing whether 
two populations are similar need to be established prior to refining 
sage-grouse management zones based upon genetic population 
units, landscape connectivity, and niche responses. units, landscape 
connectivity, and niche responses. 
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Figure 3. Functional habitat 
response between the percent of all 
sagebrush cover types (x-axis) within 
a 6.4-km buffer (130.1 km2) and 
the probability (y-axis) a landscape 
will contain enough breeding 
habitat to support Greater Sage-
grouse lek formation within each 
Management Zone (2010-2014). 
Functional response curves were 
generated using partial probability 
plots to explore the influence of a 
given variable on the probability 
of occurrence, while partialing out 
the average effects of all other 
variables in the final model. 

 
Figure 4. Functional habitat 
response between tree canopy cover 
(x-axis) within a 6.4-km buffer 
(130.1 km²) and the probability 
(y-axis) a landscape will contain 
enough breeding habitat to support 
Greater Sage-grouse lek formation 
within each Management Zone 
(2010-2014). Functional response 
curves were generated using 
partial probability plots to explore 
the influence of a given variable on 
the probability of occurrence, while 
partialing out the average effects 
of all other variables in the final 
model. 

Figures 3 - 11
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Figure 5. Functional habitat 
response between the amount of 
human disturbance index (x-axis) 
within a 6.4-km buffer (130.1 
km²) and the probability (y-axis) 
a landscape will contain enough 
breeding habitat to support 
Greater Sage-grouse lek formation 
within each Management Zone 
(2010-2014). Functional response 
curves were generated using 
partial probability plots to explore 
the influence of a given variable on 
the probability of occurrence, while 
partialing out the average effects 
of all other variables in the final 
model. 

Figure 6. Functional habitat 
response between the amount of 
tilled cropland (x-axis)within a 
6.4-km buffer (130.1 km²) and the 
probability (y-axis) a landscape 
will contain enough breeding 
habitat to support Greater Sage-
grouse lek formation within each 
Management Zone (2010-2014). 
Functional response curves were 
generated using partial probability 
plots to explore the influence of a 
given variable on the probability 
of occurrence, while partialing out 
the average effects of all other 
variables in the final model. 
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Figure 7. Functional habitat 
response between the average 
annual drought index (x-axis)within 
a 6.4-km buffer (130.1 km²) and the 
probability (y-axis) a landscape 
will contain enough breeding 
habitat to support Greater Sage-
grouse lek formation within each 
Management Zone (2010-2014). 
Functional response curves were 
generated using partial probability 
plots to explore the influence of a 
given variable on the probability 
of occurrence, while partialing out 
the average effects of all other 
variables in the final model. 

Figure 8. Functional habitat 
response between the average 
degree day 5°C (x-axis)within a 
6.4-km buffer (130.1 km²) and the 
probability (y-axis) a landscape 
will contain enough breeding 
habitat to support Greater Sage-
grouse lek formation within each 
Management Zone (2010-2014). 
Functional response curves were 
generated using partial probability 
plots to explore the influence of a 
given variable on the probability 
of occurrence, while partialing out 
the average effects of all other 
variables in the final model. 
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Figure 9. Functional habitat 
response between the gross primary 
production (x-axis)within a 6.4-
km buffer (130.1 km²) and the 
probability (y-axis) a landscape 
will contain enough breeding 
habitat to support Greater Sage-
grouse lek formation within each 
Management Zone (2010-2014). 
Functional response curves were 
generated using partial probability 
plots to explore the influence of a 
given variable on the probability 
of occurrence, while partialing out 
the average effects of all other 
variables in the final model. 

Figure 10. Breeding population index model of Greater Sage-grouse within each of the 7 Management Zones. 
Our population index model provides spatial insight into the relative importance of specific areas to the overall 
management zone-wide breeding abundance of Greater Sage-grouse during 2010-1014. Population index values 
are relative within each management zone. Sage-grouse population index areas represent spatial locations 
of the known breeding population in 10% bins differentiated by color. The darkest red areas contain 10% of 
the breeding population. Because bins are additive, red and orange hue areas combined capture 50% of the 
population, etc. 
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Figure 11. The percent of the population index model and resulting percent area of the entire population index 
model by management zones during 2010-2014
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APPENDIX I
APPEN

DIX I.  Visual display of the ecological gradients derived from
 partial probability plots from

 Figures 3-9.  Habitat variables w
ere grouped in 7 equal 

interval bins for display purposes.   

Appendix I-All Sagebrush Cover.  Ecological variation in the percentof all sagebrush cover types, across the seven greater sage-grouse m
anagem

ent zones.  
Sm

all yellow
 dots are locations of active lek locations during 2010-2014.   
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Appendix I-Tree Canopy cover.  Ecological variation in tree canopy cover, across the seven greater sage-grouse m
anagem

ent zones.  Sm
all yellow

 dots are 
locations of active lek locations during 2010-2014.   
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Appendix I-Hum
an Disturbance Index.  Ecological variation in the am

ount of hum
an disturbance index, across the seven greater sage-grouse m

anagem
ent 

zones.  Sm
all yellow

 dots are locations of active lek locations during 2010-2014.  N
ote sharp line of dark blue in w

estern M
Z V are a result of NoData. 
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Appendix I-Tillage.  Ecological variation in the am
ount of tilled cropland, across the seven greater sage-grouse m

anagem
ent zones.  Sm

all yellow
 dots are 

locations of active lek locations during 2010-2014.  Note sharp line of dark blue in w
estern M

Z V are a result of N
oData. 
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Appendix I-Annual Drought Index.  Ecological variation in the average annual drought index, across the seven greater sage-grouse m
anagem

ent zones.  
Sm

all yellow
 dots are locations of active lek locations during 2010-2014.   
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 Appendix I-Degree Days > 5 ◦c.  Ecological variation in the average degree day 5° C, across the seven greater sage-grouse m
anagem

ent zones.  Sm
all yellow

 
dots are locations of active lek locations during 2010-2014.   
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 Appendix I-Gross Prim
ary Production.  Ecological variation in the gross prim

ary production, across the seven greater sage-grouse m
anagem

ent zones.  Sm
all 

yellow
 dots are locations of active lek locations during 2010-2014.   
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APPENDIX II

A
ppendix II.

R
em

aining variables retained (variable 6
th–

15
th)and im

portance values from
the m

odel selection process for each 
m

anagem
ent zone from

 2010 –
2014.

Im
portance values are scaled by m

anagem
ent zone, so that the top variable equals 1 and the 

rem
aining variables are a proportion derived by dividing by the top variable, and are derived from

 probability scaled partialplots in 
the R

andom
Forest package in R

.

 

 M
anagem

ent Zone
6th 

7th 
8th 

9th 
10th 

11th 
12th 

13th 
14th 

15th 
M

Z I
Elev4m

iFM
tillage4m

iFM
Steep4m

iFM
m

ap120m
N

HD_Interm
ittent4m

iFM
dd5120m

dist_noag4m
FM

GH4m
iFM

adi120m
ogptdsm

4m
ifm

0.44
0.41

0.38
0.37

0.30
0.27

0.27
0.26

0.26
0.19

M
Z II

Elev4m
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TW
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N
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M
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iFM
m
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N
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ittent4m
iFM

dist_noag4m
FM
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0.31
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0.25

0.22
0.16

0.10
0.09

M
Z IV
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iFM
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iSD
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iFM
N
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ittent4m
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m
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iFM
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0.20
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M
Z V
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iFM
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iFM
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M
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0.05
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