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Abstract. Wildfire can result in significant economic costs with inquiries following such events often recommending an
increase in management effort to reduce the risk of future losses. Currently, there are no objective frameworks in which to
assess the relative merits of management actions or the synergistic way in which the various combinations may act. We

examine the value of Bayes Nets as a method for assessing the risk reduction from fire management practices using a case
study from a forested landscape. Specifically, we consider the relative reduction in wildfire risk from investing in
prescribed burning, initial or rapid attack and suppression. The Bayes Net was developed using existing datasets, a process
model and expert opinion. We compared the results of the models with the recorded fire data for an 11-year period from

1997 to 2000with themodel successfully duplicating these data. Initial attack and suppression effort had the greatest effect
on the distribution of the fire sizes for a season. Bayes Nets provide a holistic model for considering the effect of multiple
fire management methods on the risk of wildfires. The methods could be further advanced by including the costs of

management and conducting a formal decision analysis.
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Introduction

Large fire can result in significant economic costs to forest
managers and adjacent property owners (e.g. Butry et al. 2001;

Prestemon et al. 2006). A wildfire that entered the city of
Canberra, Australia, in January 2003 resulted in four deaths and
losses of over AU$350 million, including the complete loss of

414 urban houses and 87 rural houses and extensive other losses
(Ganewatta 2008). The Black Saturday fires that occurred in
Victoria, Australia, in February 2009 resulted in the loss of over
2000 houses and 173 lives (Leonard et al. 2009). Large losses

have been reported from wildfires elsewhere in Australia
(e.g. Valent 1984), North America (e.g. Cohen 2000) and
Europe (e.g. Lampin-Maillet et al. 2010).

Official inquiries following significant wildfires frequently
recommend an increase in management effort to reduce the risk
of future losses (e.g. Krusel and Petris 1992;McLeod 2003; Ellis

et al. 2004). Most commonly, the recommendation is for an
increase in the area treated annually by prescribed burning
(Esplin et al. 2003; Anonymous 2008). Other strategies include

increased investment in more aggressive fire-suppression meth-
ods, e.g. large aircraft, and methods to reduce the response time
to ignition events. These options are complementary, probably
synergistic, and have complex effects on fire behaviour, so that

it is difficult to predict intuitively how fires will respond to any
particular mix of management strategies. Land-management
agencies need to deploy an optimum mix of strategies to reduce

the risk of fires starting, spreading and reaching the wildland–
urban interface, but to date, there has been no objective frame-
work by which to judge the return on investment from these

strategies. There have been studies of the effectiveness of
prescribed burning (Boer et al. 2009; Price and Bradstock
2011) and initial attack (Plucinski et al. 2007), but studies that
simultaneously compare several strategies and measure return

on investment are lacking.
Bayesian Belief Networks or Bayes Nets (BN) are a statisti-

cal framework capable of analysing complex environmental

relationships (Johnson et al. 2010). The networks are depicted as
directed acyclic graphs with variables and their interactions
represented by nodes and directed links (Nyberg et al. 2006).

Nodes can represent predictor variables in relationships, man-
agement decisions or outcomes. Values for the predictor vari-
ables in the relationships are quantified through a series of

conditional probability tables (CPTs). Outcomes of a BN are
represented as likelihoods, which can then form the basis for risk
analysis andmanagement (Marcot et al. 2001). Bayes Nets have
been applied in a wide range of fields including medical
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diagnosis (e.g. Lucas 2004), forensic science (e.g. Oatley and
Ewart 2003), economic analysis (e.g. Ejsing et al. 2008) and
water management (e.g. Said 2006). There are several texts that

describe themechanics and theory of BN in greater detail, which
we refer readers to (e.g. Pearl 1986; Charniak 1991; Varis 1995;
Korb and Nicholson 2004; Uusitalo 2007; Barton et al. 2008).

The process of developing a BN requires several key steps,
which are described in detail by Marcot et al. (2006). Develop-
ing an influence diagram or causal web is the first step in the

process. These figures consist of boxes and arrows showing
relationships between the variables, with the arrows depicting
the direction of influence. An initial BN is then created from the
influence diagram with parent and child nodes, where parent

nodes feed into child nodes. Each node is represented by one or
several probability distributions, which form the CPT. If a node
has no parent nodes, it is represented by a single distribution, but

for all child nodes, there is a probability distribution for all
combinations of the parent nodes (Uusitalo 2007). Data for the
CPTs can come from a variety of sources. Parentless nodes

generally represent environmental factors that can be measured
or estimated from the study area of interest. Conditional proba-
bility tables for child nodes can be populated with data from

empirical statistical models, processmodels and expert opinions
where data are lacking (e.g. Johnson et al. 2010). Finally, once a
BN is developed, it should undergo validation with field data to
test the underlying assumptions and CPTs of the model (Marcot

et al. 2006).
Bayes Nets have the potential to be valuable in determining

the effect of a combination of management strategies on all

stages of a fire from the probability of an ignition through to the
ultimate fire size when the fire is contained. In this study, we
examine the value of BNs as a method for assessing the relative

reduction in wildfire risk in a fire management scenario using a
case study from the Wollemi Wilderness Area, a forested
landscape managed primarily for conservation. We focus on
modelling how fire management influences the occurrence of

large fires. Fire spread is known to be predominantly influenced
by weather and fuel loads (McArthur 1966; Fernandes and
Botelho 2003). In Australia, fire weather is often forecast using

the Forest Fire Danger Index (FFDI), which captures the effects
of recent rainfall and ambient temperature, humidity and wind
speed. Fuel loads are determined by vegetation type and time

since fire, which can include prescribed fire. In the case study,
we combine a range of existing datasets and statistical models
with expert opinion. We use the derived BN to test the effect of

each of the three management actions on the annual risk of large
or extreme fires (defined below).

Materials and methods

The case study was prepared forWollemi National Park (WNP),
a conservation reserve of ,489 000 ha (338450S, 1508300E),
,100 km north-west of the Sydney central business district.
WNP is a dissected mountain range that is contiguous with
several other National Parks that form the Greater Blue

Mountains World Heritage Area (GBMWHA – for further
details see http://www.environment.nsw.gov.au/protectedareas/
GreaterBlueMountainsWorldHeritageArea.htm, accessed July
2010). The majority of the park comprises dry sclerophyll open

eucalypt forests on steep sandstone-shale terrain. Small pockets
of rainforest, heath and grassland also occur throughout the park
(NSW National Parks and Wildlife Service 2001). WNP is

warmest in January (mean maximum temperature 31.78C, mean
minimum temperature 17.18C) and coolest in July (mean
maximum temperature 17.48C, mean minimum temperature

3.88C). Average annual rainfall is 642mm, with the average
wettest months being January and February (77 and 72.4mm) and
the driest month being August (36.4mm) (Australian Bureau of

Meteorology (BOM), http://www.bom.gov.au/climate/data/
index.shtml, accessed August 2011 – station number 061086).

The NSW National Parks and Wildlife Service (NPWS,
Department of Environment, Climate Change and Water) man-

ages the park, and has a range of pro-active and reactive fire
management strategies at their disposal. Chiefly, these are
prescribed burning (to reduce fuels), Remote Area Fire Teams

(RAFT, mobile firefighters who can be dropped into remote
areas using a helicopter that also has water-bombing capabili-
ties), and fire suppression potentially using large numbers of

personnel, tankers and aircraft when available.

Statistical methods

Bayes Net models were developed to assess the reduction in risk
of large or extreme fires by varying the levels of investment in
fire management options. Specifically, the objective of the

model was to determine which set of management actions
minimised the risk of large and extreme fires (i.e. those greater
than 1000 ha) in the landscape. The objective was chosen as it

generally corresponds with the overall objectives of the park’s
fire management plan (NSW National Parks and Wildlife Ser-
vice 2006). BN were chosen as the modelling method as they

allow multiple forms of evidence to be included and the out-
comes are presented as likelihoods or risks of occurrence, i.e. the
outcomes can be related directly to the objective. We followed
the guidelines for developing and updating BNs presented by

Marcot et al. (2006). All BN analysis was undertaken in the
GeNIe v.2.0 package (Decision Systems Laboratory, University
of Pittsburgh, http://genie.sis.pitt.edu, accessed July 2011).

The first step in the development of the BN was the
development of a conceptual framework of the fire process
(Fig. 1). This model described the progression of a fire from an

ignition through to the ultimate fire size, which is depicted by
solid arrows in Fig. 1. Ignitions can be derived from either
unplanned anthropogenic ignitions, commonly termed ‘arson’,

or from lightning. We did not consider other ignition sources in
this model as arson and lightning account for 87% of known fire
ignitions. Other sources are more random, e.g. motor vehicle
accidents and escaped camp fires, and cannot easily be mod-

elled. Once ignited, fires can self-extinguish at a small size
(,10 ha) and not require suppression. If a fire does not self-
extinguish, it can then be treated through initial attack (IA)

where resource deployments attempt to control the fire to less
than 100 ha within the first day following ignition. Where IA is
unsuccessful, the fire is then treated with different suppression

methods. At each of these steps, the fire behaviour is influenced
by fuel loads and weather.

The BNwas then developed as a series of submodels for each
of the processes described above. Submodels were developed
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from published literature, unpublished datasets and process-
based models. Where possible, submodels were limited to three
or more parent nodes (i.e. variables of influence) after Marcot

et al. (2006), although this was not always possible. Early
versions of the model were discussed with fire management
experts and BN experts and revised accordingly.

Model structure

The BN structure is depicted in Fig. 2, with the nodes

described in Table 1. This diagram depicts the nodes with
arrows depicting the direction of influence on child nodes.
Each node represents a CPT, which is populated with proba-

bility distributions as described above. There is a linear flow
through the model representing the conceptual model
described in Fig. 1. The model output or target node was
termed ‘fire size’, which represents the probability of a fire

event of a given size – no fire (,1 ha, true no-fire days or
those ignitions that self-extinguish), small fire (1–100 ha),
medium fire (100–1000 ha), large fire (1000–10 000 ha) and

extreme fire (.10 000 ha). The target node can also be con-
sidered as the proportion of days per fire year on which a fire
event of a given size can be expected to occur. The model does

not allow for the consideration of multiple fires on one day;
rather, it records the largest fire expected to occur under those
conditions. We do not consider this to be a significant limi-
tation as the fire size classes have been defined such that

multiple fires of a smaller size category add little to the total
area burnt and subsequent calculations.

Models for the probability of either an arson or lightning
ignition were derived from long-term datasets from the
GBMWHA (NSWNational Parks andWildlife Service, unpubl.

data). Generalised additive models (GAMs) were used to deter-
mine the relationships between environmental variables, climatic
variables and the probability of ignition, with the best models

determined by the Akaike Information Criterion (Akaike 1973).
In summary, the models were based on an 11-year dataset
recording the dates and grid coordinates of ignitions for the

WNP, with a total of 347 lightning ignitions and 161 arson
ignitions. Lightning ignitions were compared with 10 000
recorded lightning strikes that did not result in an ignition.

Arson ignitions were compared with 10 000 random points
within theWNP. Both ignitions forms were more likely to occur
in dry forest compared with other vegetation categories, in high
to very high fuel loads on days with FFDI in the Very High

category. Arson was most likely to occur within 1 km of a road,
most commonly within the first 200m (T. D. Penman, R. A.
Bradstock and O. Price, unpubl. data). Outputs from the arson

and lightning models were then combined into the ignition node
with a count distribution derived from the distribution of number
of ignitions per day in the ignitions dataset. Successful ignitions

then flowed through to the self-extinguishment model. Self-
extinguishment was considered to occur where fire-line intensity
(a function of fuel load and FFDI (Gill et al. 1987)) was less than
85 kWm�1 based on the models presented by McCarthy and

Cary (2002). If an ignition self-extinguished in this part of the
model, it was classified as ‘no fire’, i.e. ,1 ha.
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Fig. 1. Conceptual model describing the process for a fire event. Solid arrows represent the fire establishment and

development and dashed arrows represent the links between the fire and the variables of influence. The direction of

the arrows indicates the direction of influence.
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Ignitions that did not self-extinguish were then assumed to be
treated by an IAmethod. Three levels of IA were included in the

model: (1) ground crews; (2) one RAFT (comprising one
helicopter with water-bombing capabilities and a crew of 10
who are air-lifted into remote areas) plus ground crews; and (3)

two RAFT plus ground crews. The probability of success of any
IA was affected by the number of ignitions, fuel load, FFDI and
the level of initial attack (after Plucinski et al. 2007). Initial

attack was only considered successful if all ignitions were
contained. Successful IA results in a small fire; unsuccessful
IA resulted in the management response requiring the fire-

suppression model.
Fire-suppression models considered the potential success of

three levels ofmanagement effort on themaximum fire size. The
levels considered were (1) zero suppression, where a fire is not

suppressed and is allowed to run its natural course; (2) local
resources, which can include some light aircraft and ground
crews; and (3) optimum resources, where all feasibly obtainable

resources are on-hand. As with the IA model, the ultimate fire
size was affected by fuel load, FFDI and suppression effort,
based on the models of Cary et al. (2009) and data presented by

Boer et al. (2009). Prescribed burning effort is included within
the model through its effect on fuel loads from the previous
season (Fig. 1). In NSW, the timing of prescribed burning is
guided by fuel accumulation and ecological attributes of differ-

ent vegetation communities (Kenny et al. 2004). Based on these,
prescribed burning within WNP would usually only be con-
ducted in fuels more than 8 years old, which are represented by

the high to extreme fuel categories (Table 1). When running the
model over multiple seasons, fuels for the subsequent season are

then influenced by the fire size distribution from the current
season and fuels from the current season. Unlike prescribed

burning, wildfire reduces fuels for all categories equally.
Conditional probability tables were populated with data

where it was available and by experts for other components

(see below). Values for all biophysical variables were calculated
from data for theWNP for the period from 1997 through to 2007.
These variables were fuel load (measured by time since fire),

vegetation communities (dry forest v.wet forest) and distance to
the nearest road. The values were the proportion of WNP that
fell into each category.

Two expert workshops were run to populate CPTs relating to
IA and suppression submodels. Expert opinion was necessary as
there are insufficient data available on the relationship between
these and the variables of interest for the study area. Workshops

were run with staff from two government agencies with experi-
ence in fire suppression and IA methodologies in the Wollemi
area. One agency was primarily a fire-suppression agency and

the other was a land-management agency with responsibilities
for fire management. Workshops were held separately to ex-
plicitly capture the differing opinions and experiences of each

agency. Each workshop was held on a single day, with the two
workshops held 2 weeks apart. There were five participants in
the first workshop and seven in the second. All participants were
required to have knowledge of the WNP and experience in fire

suppression and IA methods described in the model.
At each workshop, participants were asked to assess the

influence of weather (FFDI) and fuel loads (based on fuel

categories defined byMcCarthy et al. 2009) for varying scenarios
of IA (number of ignitions crossedwith IA effort) and suppression

Distance to
road

Dry forest Fuel load

Previous
fuel load

Arson
Lightning

Ignition

Self-
extinguish?

Number of
ignitions

IA success

Fire size

Prescribed
burning effort

Initial attack
effort

Suppression
effort

FFDI

Fig. 2. Influence diagram for the management of fires in Wollemi National Park. Node descriptions appear in

Table 1. (FFDI, Forest Fire Danger Index.)
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(varying suppression effort). As this would have required proba-
bilities for 375 scenarios, the number was reduced to capture the
extreme and the mid-range scenarios, resulting in 135 scenarios.

The participants were asked to provide an estimate of the
probability using standardised terms taken from Pollack (2003),
as described in Table 2. For each scenario, there was a discussion
within the group and a consensus reached. In the discussion,

participants were asked to draw on their fire-suppression experi-
ence, as well as the local knowledge of the area. This included
consideration of natural fire breaks, e.g. cliffs and rivers, timing

between ignitions and detection, accessibility to fires via road and
aircraft and standard operating procedures of the organisations
involved. No other expert groups were available that held the

relevant experience in fire suppression and control and local
knowledge required for the BN. At the end of each workshop,
participants were shown how the model performed to ensure we
had accurately captured their opinions.

Three versions of the model were then developed, with the
first two representing the opinions of each agency and the third
representing an average of the experts’ opinions (hereafter the

mean model). Although there is some debate over the best

Table 1. Nodes and states of the fire-management Bayes Net

NPWS, National Parks andWildlife Service; WNP,Wollemi National Park; GBMWHA, Greater BlueMountainsWorld Heritage Area; RAFT, Remote Area

Fire Teams. Websites cited in this table were last accessed in March 2010

Node Description States Data source

FFDI Forest Fire Danger Index, a commonly

used measure of fire weather. See

http://www.bom.gov.au/weather-services/

bushfire/index.shtml for further details

Low, High, Very High, Severe,

Extreme

Bureau of Meteorology

Fuel load Measures based on the Victorian Depart-

ment of Sustainability and Environment

fuel classification presented in McCarthy

et al. (2009) and field data from P. Watson

(University of Wollongong)

Low, Moderate, High, Very High,

Extreme

NSWNPWS fire mapping data forWNP

Distance to road Distance (km) to the nearest mapped road 0–1 km, 1–3 km, more than 3 km NSW NPWS road mapping for WNP

Dry forest A coarse measure of vegetation community

based on vegetationmapping for the region

Dry sclerophyll forest, other

(includes wet sclerophyll forest,

heath, rainforest)

NSW NPWS vegetation mapping

for WNP

Number of ignitions Number of ignitions regardless of the cause

occurring on the day, based on recorded

data for WNP

One to two, three to four, five to ten,

more than ten

NSW NPWS fire database for WNP

Last fuel Fuel loads of the previous season. See fuel

load description above

Low, Moderate, High, Very High,

Extreme

NSW NPWS fire mapping data

for WNP

Arson Probability of an arson ignition Yes, No Statistical model

Lightning Probability of a lightning ignition Yes, No Statistical model

Ignition Probability of an ignition by lightning

or arson

Yes, No Statistical model

Self-extinguishment Probability of a fire self-extinguishing Yes, No, No fire Process model in McCarthy

and Cary 2002

Initial attack success Probability of the initial attack being

successful at containing all ignitions

to less than 100 ha

Yes, No, No fire Expert opinion

Fire size Maximum fire size achieved on a given day Small (0–100 ha),

Medium (100–1000 ha),

Large (1000–10 000 ha),

Extreme (10 000þ ha).

Expert opinion

Prescribed burning effort Decision node representing the chosen level

of prescribed burning effort for the season

0, 1% per annum, 5% per annum Decision node

Initial attack effort Decision node representing the chosen level

of initial attack effort available for the

season

Ground crew only, one RAFT

team plus ground crew, two RAFT

teams plus ground crew

Decision node

Suppression effort Level of suppression effort available

for the season

Zero, Constrained (local resources),

Optimal

Decision node

Table 2. Probability terminology used within the expert workshops

based on Pollack (2003) and the values that were subsequently entered

into the conditional probability table (CPT)

Terminology Pollack range Probability value used

Extremely unlikely ,1% 0

Very unlikely 1–10% 0.05

Some chance or unlikely 10–33% 0.2

Medium chance 33–66% 0.5

Likely/probable 66–90% 0.75

Very likely 90–99% 0.95

Virtual certainty .99% 1
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methods to combine expert opinions (e.g. Morgan and Henrion
1990; Keith 1996), some argue that averaging expert opinions
may be the best estimate of probability (e.g. Uusitalo 2007). The

mean model was assessed by an independent reviewer to
consider the model structure and CPT values (after Marcot
et al. 2006), and no changes were required.

All three models were validated by comparing the predicted
fire-size distribution with the actual size distribution of fires
mapped within the park over an 11-year period from 1997

through to 2007 (NSW National Parks and Wildlife Service,
unpubl. data). The BN model was run for each year consecu-
tively within the period to produce a multiseason model with
FFDI varying between years according to recorded data. Annual

probability distributions for the FFDI values were derived from
the annual distribution of daily maximum FFDIs recorded at
three nearby BOM weather stations (Cessnock Station number

61260, Nullo Station number 62100, Richmond Station number
67033). Fire outputs from year t were then used to influence the
fuel loads for year tþ 1 (see below). Climatic variables were

based on recorded data for the region for the fire season, i.e. from
July through to June. Fire size probability distributions from
each year were multiplied by 365 days to get the number of days

per year of each fire size and then these were summed for the
11-year period. Outputs from the BN could be compared with
the annual distribution of the daily maximum fire sizes recorded
by NSW NPWS for the study period. A Chi-square test com-

pared the fire size distribution predicted by the model and the
actual distribution recorded for realistic scenarios. Analyses were
conducted in the R statistical package v.2.11.1 (R-Development

Core Team 2007).
Four management scenarios were compared with the

recorded data. These scenarios were considered by the expert

workshops to be the best representation of current management
practices in WNP. Scenarios were based on the combinations of
prescribed burning, IA and suppression effort described below
(see Table 1 for definitions):

(1) Prescribed burning effort: 1% of the landscape burnt per
annum (pa);

(2) Initial attack effort: either ground crews or ground crews

and one RAFT; and
(3) Suppression effort: either local resources or a mixed effort

with 5% of fires with zero suppression, 60% local resources
and 35% with optimal suppression effort.

Results

When an ignition occurred in the single-season model (i.e. with

an average annual FFDI distribution), the probability of a fire
not requiring suppression owing to self-extinguishment, or
being controlled by IA, ranged from 0.493 to 0.959 (Table 2).

The probability increased with an increase in prescribed burning
effort, which was largely due to an increase in the probability of
fires self-extinguishing before requiring an IA effort. For any

ignition, the probability of self-extinguishment was 0.131 for
zero prescribed burning, 0.138 for prescribed burning at 1% pa
and 0.176 for prescribed burning at 5% pa. Expert opinion was
not included in the self-extinguishment node, and therefore it

was identical across the three models. Models based on the
expert opinions were used to examine the success of the dif-
ferent IA methods (Table 2). The models from Agency A

resulted in the probability of initial attack success (IAS) almost
doubling when IA included a single RAFT compared with only
ground crews and another small (0.03) increase when the second

RAFT was added. In contrast, the models from Agency B sug-
gested little advantage in using RAFT, with the addition of a
single RAFT resulting in only a minor (0.001) increase in PIAS

and a further increase of only,0.005 when a second RAFT was
included.

The predicted annual probability of a large or extreme fire
(hereafter PL,E) responded to IA and suppression effort, but

prescribed burning (PB) had an extremely limited direct effect
(Fig. 3). While holding IA and suppression effort constant,
increasing PB from 0 to 5% pa resulted in less than a 5%

decrease in PL,E. Patterns for the effectiveness of IA described
above were reflected in the PL,E, with models from Agency A
predicting large decreases inPL,Ewith the addition of RAFT, but

limited changed in the models from Agency B. Similar patterns
were seen in suppression effort, with agency A predicting large
changes inPL,E from increasing suppression effort.Models from

Agency A predicted 40–50% reduction in PL,E when suppres-
sion effort changed from zero to local resources, and again when
effort changed from local resources to optimum resources. In
contrast, Agency B predicted less than 0.5% decrease in PL,E

when suppression effort changed from zero to local resources
and a decrease of,11% in PL,E when effort changed from local
resources to optimum resources (Fig. 3).

In the period from 1997 to 2007, the number of actual days
when large or extreme fires occurred was 32. Results from the
BN simulations for this period appear in Fig. 4 and Table 3.

Patterns in the 11-year simulation reflect those described for the
‘average conditions’ models above. When compared with the
actual distribution of maximum fire size per day, data from
themean expert model using ground resources for IAwith either

suppression scenario were the best fit with the actual data
(P¼ 0.642 local resources, P¼ 0.343 mixed suppression)
(Table 4; Fig. 4). Models using the opinions of Agency B had

a similar fit for all four of the ‘realistic’ fire management
scenarios ranging from P¼ 0.026 (ground IA, mixed suppres-
sion) through to P¼ 0.087 (one RAFT, local suppression

resources). The mean model for RAFT was significantly differ-
ent from the actual data from WNP (P, 0.005), as were all
models of Agency A (P, 0.001) (Table 4).

Discussion

The study demonstrated that BNs have the potential to provide a

holistic analysis of the primary fire management strategies.
Owing to the complexity of fire management, most research to
date has focussed on the direct effect of single management

strategies. There are several studies that examine the effect of
varying levels of prescribed burning on the extent of area burnt
in a landscape (e.g. Bradstock et al. 2008; King et al. 2008; Boer

et al. 2009; Cary et al. 2009). Similarly, there are several studies
that examine the effectiveness of rapid initial attack in con-
trolling ignition events (e.g. Hirsch and Martell 1996; Plucinski
et al. 2007). To our knowledge, the current study is the first study
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opinion.White bars represent zero suppression, grey bars represent local suppression effort and black bars represent optimal suppression effort. (RAFT, remote

area fire team.)
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to undertake an integrated analysis of several fire management
techniques.

Probabilities generated through the expert workshops pro-

vided the greatest source of uncertainty in the model. All
participants had valuable experience in fire management either
within the WNP or in vegetation similar to the park. Uncertain-

ties were related to the variation in agency opinions. Agency A
appeared to overestimate their ability to control fires in both the
IA and suppression phases of control, whereas the data suggest

Agency B underestimated this ability. These differences could
be related to the methods the two agencies used in attacking or
suppressing fires. Agency A is a land-management agency that

attempts to control fires within its boundaries and this was
evident in the workshops. They believed they could either
activate IA crews or, where they failed, create and control the
fire boundaries under most weather and fuel combinations. In

contrast, Agency B has a stronger focus on property protection,
resulting in a primary objective of preventing a fire from
affecting the wildland–urban interface (WUI). This was

reflected in the results where Agency B had a limited range of
FFDI values under which they would attempt any form of IA
(aerial or ground) and would use large natural fire breaks

(i.e. roads and rivers) to contain fires. These boundaries are rare
within the WNP and this led to Agency B overestimating the
number of extreme fire events.

Averaging the expert agency opinions resulted in a model

that closely duplicated the recorded fire patterns within the
WNP over an 11-year period. Methods for combining multiple
opinions are still subject to debate in the literature as ‘the

fraction of experts who hold a given view is not proportional

to the probability of that view being correct’ (Keith 1996,
p. 139). In the present study, we consider it unlikely that a truly
average position of opinions would have been reached had we

run a single workshop combining the two groups. There are
different fire management paradigms between the organisa-
tions, and within a single workshop, it was expected that

dominant personalities would have dictated proceedings, there-
by biasing the results. Although this may have happened to a
lesser extent within each group, the friendly and familiar nature

of each workshop allowed more free-flowing discussion and
debate. By validating the three models against data collected
over an 11-year period, it is our opinion that the model derived

from the average of the two expert opinions provided a realistic
representation of the major drivers of the fire process inWNP as
demonstrated by the model validation process.

Replicating fire patterns under existing management condi-

tions allowed us tomore confidently assess the predictions of the
effects of varying management strategies on annual fire pat-
terns. Our model suggests that increasing prescribed burning

from 0 to 5% pa results in less than a 5% reduction on the annual
PL,E while holding other management aspects constant. It is
important to note that our approach to PB is comparable with

random placement of fires, which is known to have a lesser
effect than a strategic pattern (Loehle 2004; King et al. 2008).
Increasing the level of effort for IA and suppression had a much
greater effect on reducing the PL,E (Fig. 4). RAFTs resulted in a

significant increase in the proportion of fires controlled during
IA, which in turn reduced the risk of large or extreme fires.

Prescribed burning has a lower influence on the area burnt in

comparison with other drivers such as suppression and weather,
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Fig. 3. (Continued)
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which is consistent with other studies in the same landscape
(Cary et al. 2009; Price and Bradstock 2011). In the BN, the
effect of prescribed fire was determined in two stages: (1) the

direct effect on fuel hazard, and (2) through the effect of fuel
hazard on the ability of management to control the fire through
IA or suppression approaches. The analytical approach adopted

is a very different approach to Price and Bradstock (2011), who
used empirical data from fire-history mapping and Cary et al.

(2009), who used established fire-spread models to simulate fire
regimes. However, it is significant that all three approaches

reach a similar conclusion that prescribed burning has limited
effect on the extent of fire in the landscape.

The BN presented here could be parameterised for any fire-

prone biome in the world as the underlying concepts remain the
same. Regardless of geographic location, fire intensity is pri-
marily a function of fuels and weather (McArthur 1966; Gill

et al. 1987) and the probability of controlling a fire is a function
of fire intensity (Hirsch and Martell 1996; Fernandes and
Botelho 2003; Plucinski et al. 2007). Weather in the study is
represented through FFDI, a value that combines air
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Fig. 4. Predicted number of days with large (1000–10 000 ha) or extreme (.10 000 ha) fires for the period from 1997 to 2007 using (a) mean expert opinion;

(b) agencyA expert opinion; and (c) agencyB expert opinion.White bars represent zero suppression, grey bars represent local suppression effort and black bars

represent optimal suppression effort. The actual recorded number of days of large or extreme fires was 32.
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temperature, relative humidity, wind speed and both long- and
short-term drought effects (McArthur 1967; Noble et al. 1980).
Similar metrics are available for other regions (see Kaloudis

et al. 2005 for a discussion of these) that could readily replace
FFDI in themodel. Fuels are represented by a series of five states
from low to extreme as defined byMcCarthy et al. (2009), which
could be readily adapted for most systems. Some additional

work would be needed to ensure the models for ignition are
relevant to local conditions as regional variations in lightning
ignition probabilities occur (Granström 1993; Larjavaara et al.

2004).
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